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It has been a great challenge for biologists to understand the
complicated and often myriad mechanisms of gene regula-
tion. The recent success of genome sequencing projects
[1,2], combined with very effective gene-prediction algo-
rithms, has generated abundant gene sequences, but our
understanding of gene regulation has remained very
limited. In human and other higher eukaryotes, gene
expression is modulated by the binding of various transcrip-
tion factors onto cis-regulatory regions of a gene. Binding of
different combinations of transcription factors may result in
a gene being expressed in different tissue types or at differ-
ent developmental stages. To fully understand a gene’s func-
tion, therefore, it is essential to identify the transcription
factors that regulate the gene and the corresponding tran-
scription-factor-binding sites (TFBSs) within the DNA
sequence. Traditionally, these regulatory sites were deter-
mined by labor-intensive wet-lab techniques such as DNAse
footprinting or gel-shift assays [3]; several online databases,
such as TRRD, COMPEL and TRANSFAC [4,5] have been
constructed to store experimentally determined TFBSs.
Now, Lenhard and colleagues [6] describe a new addition to
the toolkit for TFBS prediction.

In recent years, various computational methods have been
developed to model and predict gene-regulatory elements.
But predicting TFBSs has proved to be much harder than
predicting genes, the intrinsic difficulty being that TFBSs are
in general very short and often degenerate in sequence.
Most TFBSs are short sequences of 6-12 base-pairs located in
the non-coding regions of a gene, most often in the 5� flank-
ing region but sometimes in the 3� region or even introns.
Only between four and six bases within each TFBS are fully
conserved, however, with the other positions being highly
variable from gene to gene. As a result, TFBSs are often
modeled using position-specific weight matrices (PWMs)
[7], which in essence summarize the relative frequencies of
each of the four nucleotides at each position. Figure 1
shows an example of such a matrix, for the human tran-
scription factor GATA-1, from the widely used TRANSFAC
database [5].

Given a PWM and a reliable scoring function, one can scan
genomic DNA sequences and identify potential TFBSs. But
because TFBSs are highly degenerate, the majority of pre-
dicted sites are ‘false positives’ that have no biological
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significance [8]. Several strategies have therefore been
developed to reduce the false-positive rate; these include
combining predictions with gene-expression data [9] or
using prior knowledge of gene co-regulation [10]. Another
approach is to take advantage of the fact that genes are
often regulated by multiple transcription factors, so poten-
tial TFBSs tend to be clustered or adjacent to each other
[11]. Alternatively, some researchers have tried to create
more precise and sensitive tools for local sequence align-
ment and pattern discovery [12,13].

With the advance of genome sequencing projects, it has
become obvious that comparing genomic sequences across
species - ‘comparative genomics’ - is a very effective way to
identify functionally important DNA sequences. At first com-
parative techniques were primarily applied to the coding
regions of genomes, to identify genes or exon-intron bound-
aries [14]. More recently, such evolutionary approaches have
become central to the efforts to predict gene-regulatory sites,

and the technique itself in this context has become known
as ‘phylogenetic footprinting’ [15,16], a term inspired by
the wet-lab technique of DNAse footprinting. The reasoning
behind the approach is that, just like coding sequences, reg-
ulatory elements are functionally important and are under
evolutionary selection, so they should have evolved much
more slowly than other non-coding sequences. Genome-
wide sequence comparison and studies on individual genes
have confirmed that regulatory elements are indeed con-
served between related species [17-19]. Thus, if we align the
non-coding regions of orthologous genes from two species
that are sufficiently evolutionarily distant (but not too
distant), we should be able to detect the conserved regula-
tory elements interspersed between the truly non-functional
background sequences. This approach is illustrated schemati-
cally in Figure 2, in which a hypothetical human gene and its
orthologs from mouse, rat and chimpanzee are shown
together; alignment of the orthologous sequences reveals
conserved TFBSs that are present in more than one species. 

Phylogenetic footprinting was first performed by visually
examining the alignment of orthologous sequences; then,
automated computer programs were developed to assist the
process. In this issue of Journal of Biology, Lenhard, Sandelin
and colleagues describe their most recent success in predict-
ing TFBSs by comparative genome analysis [6]. They also
introduce an interactive, web-based computational plat-
form, ConSite [20], which allows users to do their own
phylogenetic footprinting. 

The power of any TFBS prediction algorithm that uses
PWMs depends on the quality of the matrix models that it
uses, since the matrices represent an abstraction of experi-
mentally verified TFBSs. Lenhard and colleagues [6] collected
TFBSs from both in vivo and in vitro assays and used an
improved motif discovery algorithm, ANN-Spec [21], to con-
struct over 100 distinct and high-quality TFBS profile matri-
ces. These comprehensive profiles were collected into an
online database JASPAR [22], which is freely available to the
scientific community. Users of ConSite can either provide an
existing alignment of two orthologous sequences or input
just the sequences alone and the program will generate the
alignment. The program then scans the individual sequences
for potential TFBSs and compares the potential sites between
the aligned sequences. Only those conserved sites that are
present in both sequences and also, more importantly, are
located in equivalent positions in the two aligned sequences,
are selected and reported in the output. The remainder of the
sites, which are not conserved between the two species, are
considered to be false positives and are eliminated. 

This phylogenetic filtering procedure significantly improves
the power of TFBS prediction, as is demonstrated by an
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Figure 1
An example of a position-specific weight matrix (PWM) adapted from
the TRANSFAC database [5]. The sequences that have been shown
experimentally to bind to the human transcription factor GATA-1 have
14 positions, among which only positions 6-10 are fully conserved.
Abbreviations: R, G or A (purine); N, any; S, G or C (strong); D, G or
A or T. Twelve sequences were used to build this matrix.
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example described in detail in the article by Lenhard et al.
[6]. The authors compared the human �-globin promoter
sequence with the orthologous sequences from mouse and
cow; this dramatically reduced the false-positive prediction
of TFBSs and they were able to identify a previously docu-
mented regulatory site. The authors also studied a larger set
of human-mouse gene pairs and compared the results pre-
dicted by ConSite with the previously verified regulatory
sites. On average, phylogenetic footprinting improved the
selectivity of TFBS prediction by 85% compared to using
matrix models alone, and could detect the majority of veri-
fied sites. When compared with other available systems,
ConSite has a flexible and easy-to-use web interface. Users
of the website can choose to search for binding sites for any
numbers of transcription factors or can even provide their
own defined PWMs. The entire procedure and the output
graphs can be modulated by many user-specified parame-
ters such as the extent of required conservation (cut-off),
and the length of sequence to search (window size).

It is becoming evident that comparative genome analysis is
very powerful and will be of use not only for genome anno-
tation but also as an adjunct to more traditional disciplines,
such as molecular biology and genetics. Just like the

sequence-alignment programs that emerged in the early
1990s, ConSite and other similar programs [23,24] will
prove very valuable and timely research tools for the scien-
tific community. Many new research directions are currently
being pursued in this area; for example, pair-wise sequence
comparisons can be expanded to include multiple species
and to make use of additional information, such as evolu-
tionary distance and phylogenetic relationships [25]. More
precise and effective sequence alignment programs have
been created to handle genome-scale sequences [26,27]. In
addition to the human-mouse comparisons, some
researchers are also proposing cross-species comparison
between human and other primates, which has been
described as ‘phylogenetic shadowing’ [28]. This approach
complements human-rodent comparisons and will detect
primate-specific regulatory elements (see Figure 2). On the
‘wet’ experimental front, recent developments include
microarray-based technologies such as ‘ChIP-chip’, which
combines chromatin immunoprecipitation (ChIP) with
analysis of the precipitated DNA on a microarray (chip), to
detect TFBSs within a whole genome [29]. It can be imag-
ined that, with the emergence of more mammalian genome
sequences in the near future, we can finally identify all the
gene regulatory elements in the human genome and use
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Figure 2
Using phylogenetic footprinting to detect conserved TFBSs. This schematic diagram shows a hypothetical human gene aligned with its orthologs from
three other mammals. Cross-species sequence comparison reveals conserved TFBSs in each sequence. Sequence motifs of the same shape (colored
in green) represent binding-sites of the same class of transcription factors. TFBS1 and TFBS4 are conserved in all four mammals; TFBS3 represents a
newly acquired, primate-specific binding site. TFBS2 and TFBS2� represent orthologous regulatory sites that have diverged significantly between the
primate and rodent lineages. Blue rectangles represent TATA boxes.
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them as a blueprint for understanding the mysteries of
gene regulation.
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