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The general cooling of the world’s climate that began in the

Tertiary and culminated in the Pleistocene glacial cycles

from about 2.4 million years ago attracted the attention of

evolutionary biologists because of its possible effect in

changing species distributions, and thus on the speciation

of organisms. The role of these climatic fluctuations on

speciation has been much debated. At one end of the

debate, some researchers argued that the cooling suppressed

or slowed speciation, as leading-edge waves of species

populations repeatedly colonized deglaciated regions in the

interglacial periods [1,2]. This form of repeated coloniza-

tion of genetically similar individuals from the same source

populations can prevent genetic differentiation required for

speciation. Others thought that the cooling, and the barriers

of ice that divided up populations, increased the rate of

speciation; in an extreme example of this view, Ernst Mayr

wrote in his classic 1970 book [3] that “Evolutionists agree

on the overwhelming importance of Pleistocene barriers in

the speciation of temperate zone animals”.

Data from studies of North American songbirds have been

useful in showing which of these two views is correct. As

late as 1999, it was thought that species and species

complexes of North American songbirds diverged in the late

Pleistocene, which would support the view that climate

cooling increased the rate of speciation [4]. This was,

however, refuted convincingly by mitochondrial DNA data

that suggested that the emergence of new songbird species

appeared repeatedly over the past 5 million years, which

would mean a much smaller role for climate cooling in

speciation [5].

The current consensus is that some species of songbirds

originated earlier in the Pleistocene, before the glaciations

started [5-7]. It is also generally agreed that strong popu-

lation structure has evolved in songbirds and in many other

organisms [5-8]. When many genetic differences accumulate

in different populations, this structures species into isolates

that can be a precursor to speciation. However, there is

some evidence that songbird speciation might have been

completed during late glacial advances by repeated bouts of

geographical isolation, as shown by the fact that divergence

times estimated with a molecular clock in superspecies

complexes of boreal (boreal forest) superspecies of North

American birds date to the Pleistocene [9]. These complexes

are groups of very similar emergent species with adjacent

distributions that are restricted to boreal forests that were

glaciated in the Pleistocene.
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UUnncceerrttaaiinnttyy  iinn  iinnffeerreenncceess  ooff  ggllaacciiaall  rreeffuuggiiaa
Although there is compelling evidence that ancestral source

populations can differ genetically, there is uncertainty about

whether isolation of populations that survived and differen-

tiated in glaciated areas called glacial refugia is required to

explain genetic differentiation in extant populations [7,10].

Furthermore, inference of the number of these refugia and

the timing of isolation of populations has, until recently,

depended on the construction of gene trees, assumptions

about whether these trees reflect population trees, calibra-

tions of molecular clocks and mutation rates of the genes

being studied. All these components have uncertainties

inherent in their estimates. Innovative new studies have,

however, begun to address these uncertainties with exciting

insights into the impact of Pleistocene climatic cycles on

population differentiation and, potentially, on speciation

[10-14].

Evidence for divergence within species complexes of

songbirds in both the Pleistocene period and postglacially

has been presented in recent studies [13,14]. The yellow-

rumped warbler complex comprises two North American

migratory subspecies, the myrtle warbler (Dendroica coronata

coronata and Audubon’s warbler (D. c. auduboni), previously

thought to be separate species, and two largely sedentary

(non-migrating) forms from Mexico (D. c. nigrifrons) and

Guatemala (D. c. goldmani). The North American forms

breed in higher-latitude locations than the Mesoamerican

forms, locations that were glaciated in the past. The North

American forms hybridize with the Mesoamerican forms

only in a narrow hybrid zone in British Columbia and

Alberta, but they migrate and overlap with the Meso-

american forms in winter.

Phylogenetic analyses of three mitochondrial DNA genes

using Bayesian methods that account for phylogenetic

uncertainty have shown, surprisingly, that the two Meso-

american forms are reciprocally monophyletic, that is, that

they each form a monophyletic group that is phylo-

genetically separated from the other, whereas the North

American forms have high levels of shared ancestral poly-

morphisms [13]. Assuming a mutation rate of 2% per

million years, a coalescent approach yielded population

divergence times of about 400,000 years ago between

Mesoamerican and North American forms and 16,000 years

ago between the two North American forms. Coalescent

theory is a population genetics model that traces all the

alleles of a gene in a population sample to one ancestral

copy shared by all members of the population, which is

called the most recent common ancestor (MRCA). By apply-

ing a mutation rate for the gene it is possible to obtain the

time in years when the MRCA existed, which approximates

when the forms diverged unless they continued to exchange

alleles for some time after they separated. However, when

dated with a wide range of gene-specific mutation rates, the

uncertainty in dates was revealed, ranging up to 1.9 million

years ago between migratory and sedentary forms and up to

41,000 years ago between migratory forms.

CCoouupplliinngg  ppaalleeooeennvviirroonnmmeennttaall  aanndd  ggeenneettiicc  mmooddeelliinngg
With such imprecision in estimating divergence times, it is

difficult to test hypotheses of postglacial population

differentiation or rapid speciation using genetic data alone.

Now, however, fossil paleoecological data have emerged that

can provide an independent timeframe for recent postglacial

genetic divergence. McCormack et al. in a recent study in

BMC Biology [14] capitalized on populations of Mexican jays

(Aphelocoma ultramarina) in the ‘sky islands’ - isolated

mountain niches - of southwestern USA and northern

Mexico; these birds are ecologically tied to pine-oak

woodlands (Figure 1). Fossilized plant material in the

garbage collected in the middens of packrats (Neotoma spp.)

showed that the sky islands were connected by continuous

woodlands 18,000 years ago, at the last glacial maximum,

but as climate warmed in the past 9,000 years the woodlands

have been driven to higher elevations and have been

displaced by grassland and desert at lower elevations. The

authors [14] therefore predicted that populations of jays

should share common alleles from the ancestral population,
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The Mexican jay is a sedentary species found in pine-oak woodlands in
the sky islands in the southwestern USA and northern Mexico.
Different populations have differentiated genetically within the last
10,000 years. Photo by TJ Ulrich with permission from Visual
Resources for Ornithology, the Academy of Natural Sciences,
Philadelphia, PA.



but that each population should have a suite of ‘private’

alleles that has accumulated by mutation in the postglacial

period. That is exactly what they found in judiciously

chosen mitochondrial and nuclear loci with high mutation

rates.

McCormack et al. then subjected the genetic data for

selected population pairs to a multilocus coalescent analysis

to estimate the time of population divergence and obtained

confirmation of postglacial differentiation in the past

10,000 years or less, on the basis of the 90% highest

posterior density distributions. By fitting a model of popu-

lation splitting to explain the genetic data it is possible to

generate a large number of possible estimates of a para-

meter, which forms the posterior density distribution of

parameters, such as population divergence time. This

method also takes into account the uncertainties in the

simulation process. Additional corroboration of the

coalescent estimates was obtained from genetic distances

corrected for within-species polymorphism, with the

exception that divergence times in the western sky islands in

the Arizona ‘archipelago’ were found using this method to

range up to 81,000 years ago. The general message that

emerges from this excellent study [14] is that detection of

postglacial divergence requires large sample sizes to detect

private alleles arising from new mutations and to reduce

stochasticity in the coalescent process modeled with or

without migration.

EEccoollooggiiccaall--nniicchhee  mmooddeelliinngg  aanndd  ssttaattiissttiiccaall  tteessttiinngg  ooff
hhyyppootthheesseess
Other exciting developments that are helping us to under-

stand the impact of climate-induced shifts in the Pleistocene

on distribution of populations, and thus on speciation,

include the use of ecological-niche modeling to predict past

geographic distributions of ancestral source populations.

This innovative approach provides the tools for statistical

testing of hypotheses about multiple refugia by integrating

inferred past distributions with coalescent-based genetic

models [10-12]. Again, these studies are using the multiple

replicates provided by different sky-island populations in

North America and include a plant-insect herbivore associa-

tion [12] and montane grasshoppers [10,11].

Cutting-edge research from the Knowles laboratory at the

University of Michigan [10,11] using ecological-niche

modeling has provided a reconstructed historical distribu-

tion of the flightless montane grasshopper (Melanoplus

marshalli), revealing that, during glacial maxima, sky-island

grasshopper populations in Colorado and Utah must have

been displaced to lower refugial areas nearby. By coupling

this approach with genetic modeling, the authors were able

to test statistically whether the grasshoppers survived in a

single ancestral refugial population or multiple refugial

populations. Genetic modeling in a coalescent framework

not only accounts for the stochastic effects of genetic drift

in patterns of population divergence, but by simulating

DNA sequences it also incorporates the effect of mutational

variance. This makes it possible to use the amount of

lineage sorting in extant populations, as measured by the

number of deep coalescents in gene trees, to test whether

the amount of discord between the sequence data and a

two-refugia model is significantly lower than expected

under a single refugium model. Recolonization from

multiple or single refugia in interglacials could therefore

possibly explain why populations of grasshoppers have

either evolved strong geographic structure or have

speciated, whereas others have differentiated relatively

little.

By bringing more biological realism from the natural

history of organisms into ecological and genetic modeling

of population divergence, the impact of glacial cycles on

current biodiversity is being revealed in increasing detail.

An interesting aspect of several of these studies is that they

often choose to sequence the mitochondrial cytochrome

oxidase gene (COI), sometimes in tandem with multiple

nuclear genes. COI is used because it has sufficient variable

sites in the part of the gene used in DNA barcoding studies

to provide sufficient resolution for coalescent analysis. This

point is made clearly in the Mexican jay study [14] and is a

straightforward prediction of the faster coalescent times

and resolving power of mitochondrial genes [15]. Although

the current emphasis in detecting very recent (postglacial)

population divergence is on analysis of increasing numbers

of nuclear sequences to reduce variance across loci, it seems

unwise not to combine these with one or more faster

evolving mitochondrial genes, as was done so effectively

with the montane grasshoppers [10]. Ultimately, such a

unified approach is likely to help delimit species

genetically and to connect the processes of population

divergence and species recognition in a more rigorous way.
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