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The Huxley whose name appears in the title of this article is

not Thomas (Darwin’s ‘Bulldog’), but his grandson Julian, the

author of Problems of Relative Growth [1], brother of the

novelist Aldous (Brave New World) and half-brother of the

biophysicist Andrew (the Hodgkin-Huxley equations). In

1924, Julian began studying the relative size of various organs

and found many examples of what he called ‘allometries’, as

opposed to ‘isometries’. If an individual were simply

magnified, all the parts would increase in size by the same

amount and this would be an example of an isometry, in

which the relative size of the component parts is independent

of the absolute size of the organism. But the heads of the ants

in Figure 1a are relatively larger for a large ant than for a small

one, and this is an example of an allometric relationship: the

relative size of one part of an organism compared to another

part depends on the absolute size of the individual.

The remarkable thing Huxley discovered in his studies of

relative growth, and summarized in his 1932 book Problems

of Relative Growth [1], is that the mathematical relationship

describing an allometry is very often a power law rather

than some other function such as an exponential or a

sigmoidal curve. From Figure 1a one can see that the ant

legs, thorax and abdomen are about isometric (close to the

same relative size for all the ants pictured), but the length of

the head, L, is related to the length of the abdomen, A, by

the power law L = bAk, with k = 2.06. The width of the head,

W, is related to A by another power law, W = bAk, with the

exponent k = 1.66. When power laws are plotted double

logarithmically, they give straight lines with a slope of k

(Figure 1b). It is easy to imagine that these double

logarithmic plots would be curved rather than straight (not

power laws), but in fact they typically are close to straight

lines, sometimes over a 1,000-fold or more range of sizes.

Allometric relationships like these are also called ‘scaling

laws’ in the broader context of the physical sciences.

Why should power laws pop up so frequently in studies of

the relative sizes of parts of an organism? A common view is

that their frequent appearance is an illusion. Problems of

Relative Growth was an immediate success, but Huxley’s argu-

ment that allometric relationships are described by power

laws was viewed with suspicion from the very start. For

example, in his review of Huxley’s book in Nature, CFA

Pantin [2] concluded that “It is a book which every bio-

logical library should possess and every student of biology

can read with profit.” Nevertheless, Pantin noted that the

power-law relation “… is necessarily empirical. Of the

causes of differential growth we have little knowledge; their

investigation is the problem at issue. A variety of possible

relations, in fact, reduce approximately to this formula. But

it is not the object of the formula to establish the correctness

of a particular hypothesis as the cause of differential growth;

it merely expresses the observed facts with considerable

accuracy in a simple way, so that many very significant

features emerge which would not otherwise do so.”
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The relative sizes of parts of an organism frequently depend on the absolute size of the
individual, a relationship that is generally described by power laws. I show here that these
power laws are a consequence of the way evolution operates.
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Pantin’s early reserve about the use of power laws has

continued. For example, in his comprehensive review of

allometry, Gould [3] said that allometry “… is not confined

to any form of mathematical expression, such as a power

function.”

Here I show, however, that Huxley’s power laws are not just

a convenience but rather often are a natural consequence of

the way evolution operates.

TThhee  ssttaattee  ooff  eevvoolluuttiioonnaarryy  tthheeoorryy  oonn  DDaarrwwiinn’’ss  110000tthh
bbiirrtthhddaayy  
Julian Huxley graduated from Oxford just 100 years after

the birth of Charles Darwin, and after attending the

centennial celebrations, embarked on a career in biology.

Later in his career, Huxley was an important participant in

the incorporation of population genetics into Darwinian

theory - the synthetic or neo-Darwinian theory of evolution -

but his first major contribution was the study of allometric
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Allometric relations are illustrated by pictures and graphs. ((aa)) Four neuters of the ant Pheidole instabilis reproduced from Figure 36 of Huxley’s
Problems of Relative Growth [1]. The size of the head is clearly relatively larger for the larger ants, an example of an allometric relationship. The line
drawing between the two smallest ants shows the outlines of the four ant heads superimposed, after being scaled in the x and y directions to be the
same size. ((bb)) A double logarithmic plot of head length (circles) and head width (squares) as a function of abdomen length (arbitrary units) for the
four ants in (a). ((cc)) Idealized ants with elliptical heads illustrate an allometric relationship between heads and bodies.
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relations. To understand why Huxley was so attracted to

scaling laws in biology, I first need to briefly review the state

of evolutionary theory in 1909 [4].

By the start of the 20th century, virtually all biologists

embraced the notion of evolution. But at that time there

was a sharp debate about the mechanism of evolutionary

change. As Huxley [5] wrote later, in a review of the oppo-

sition to Darwin’s theory at the turn of the century, “… about

1890 doubts began to be thrown upon it, and around 1910

it had become so unfashionable that some critics pro-

claimed the death of Darwinism.” ‘Darwinism’ here refers to

the random heritable variation and natural selection parts

of the theory, not the idea of evolution itself. One of the

popular alternatives to natural selection as a mechanism for

evolution was the notion of ‘orthogenesis’ [6]. The 19th-

century concept of orthogenesis is a little difficult to grasp

by the 21st-century mind used to the biochemical mecha-

nisms of genetics because the mode of explanation

common around 1900 is so unfamiliar to us. Orthogenesis

is synonymous with ‘definitely directed evolution’ [7], the

idea that organisms contain a principle that causes them to

transmutate (in part, perhaps, through some stimulus from

the environment) along a predetermined course. The course

of this evolution is unaffected by natural selection unless

the result is so badly suited to the environment that the

species becomes extinct. This theory was particularly appeal-

ing to paleontologists, whose arrangement of fossils in an

‘orthogenetic series’ revealed what was believed to be the

natural unfolding of a predetermined program of change

such as, for example, a steady increase in size. To explain

the appeal of orthogenesis, I need to consider the 19th-

century criticisms of Darwin.

Of the many early criticisms of Darwinian theory [4] three

are important here. First, critics noted that not all changes

between species could be believed to be adaptive; indeed,

arguments for the adaptive nature of most characteristics of

a species were really ‘Just So’ stories [8]. Second, the critics

had a hard time accepting Darwin’s notion that changes

occurred totally at random, because various species seemed

to develop along some orderly trajectory as if evolution had

a preferred direction. Also, by the time of Darwin’s 100th

birthday, the theory of recapitulation (‘ontogeny recapitu-

lates phylogeny’) had many adherents and, because develop-

ment follows a predetermined course, how could evolution

be directionless? Finally, biologists at the time hoped that

evolution would conform to laws (orthogenesis was

claimed, by its proponents, to be a law), and the concept of

a probabilistic law that Darwinism demanded was largely

unfamiliar, certainly in biology. The law of orthogenesis,

then, was preferred by many over the natural selection of

random changes as a mechanism for evolution because it

escaped (by construction) these three criticisms. Some

versions of orthogenesis also accounted for the extinction of

species because it was believed that, in the final stages of the

predetermined evolutionary changes, maladaptive charac-

teristics, like the giant antlers thought to cause the

extinction of the Irish elk, were a natural end state.

In 1924 Huxley published his first paper [9] on allometry

(he used the term ‘hetergonic development’ at the time and

did not coin ‘allometry’ until 1936 [10]) in which he

analyzed data on the relative size of the larger fiddler crab

claw (chela; Figure 2a). When the weight of the large claw of

the fiddler crab was plotted double logarithmically against

the weight of the rest of the body, “… a remarkably straight

line was obtained” (Figure 2b). This finding is significant,

according to Huxley, because of its implications for evolu-

tionary theory. If these allometric relationships hold (as

Huxley found they did) “… throughout a group, and the

evolution of the group has been from small to large size, we

shall get apparent orthogenesis…” [9]. Thus, the existence

of allometric relationships, together with natural selection

for size, automatically explains orthogenesis within the

context of Darwinian theory. This is Huxley’s important

observation but, of course, it leaves open the question of

why allometric relations exist at all.

TThhee  ssttaattee  ooff  eevvoolluuttiioonnaarryy  tthheeoorryy  oonn  DDaarrwwiinn’’ss  220000tthh
bbiirrtthhddaayy
By Darwin’s 150th birthday, the original evolutionary

theory had been updated - Huxley was an important

contributor to this updating - to neo-Darwinism, a version

that incorporated population genetics to give a mechanistic

account of the sources of variability upon which natural

selection worked. Now, at Darwin’s 200th birthday, evolu-

tionary theory reflects the inclusion of the revolution in

molecular biology that occurred during the last half of the

20th century and into this one [11-13].

Orthogenesis was constructed as an answer to particular

criticisms of Darwin’s theory, and these criticisms, although

still relevant, tended to be obscured by the middle of the

20th century by the success of neo-Darwinism in removing

the mystery associated with ‘heritable variations’. Neverthe-

less, species do evolve in preferred directions and do possess

many individual characteristics that have not arisen as a

direct result of selection. With the re-merging of develop-

ment and evolution [11-13], we now appreciate that pattern

formation in embryogenesis is the result of complex genetic

networks, and that these networks are highly conserved

through evolution. The constraints imposed by the pattern-

formation networks account for the preferred directions of

evolution and the existence of characteristics that are not
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necessarily adaptive, and explain why the size of organs is

related to the overall body size. Thus, the existence of

allometric relations has, for the past two decades, been

attributed to conservation of genetic networks [14].

HHooww  ppoowweerr  llaawwss  aarriissee
But why do we so often seem to end up with power laws

when we describe the relative size of organs? Here is my

answer to this question.

Figure 1a shows drawings of ants reproduced from Figure

36 of Huxley’s Problems of Relative Growth [1]. The line

drawing inserted between the smallest two ants represents

the superimposed outlines of heads for all four ants after

the outlines have been stretched or compressed in the

vertical and horizontal directions to be all the same width

and length. Clearly, the ant heads are all about the same

shape, but stretched and compressed by different amounts.

This observation is, as described below, what leads to the

allometric relationships presented in Figure 1b (log of head

length and width as a function of log abdomen length).

The outline drawings of the ant heads in Figure 1a can be

described by some, perhaps complicated, function of x

(horizontal direction) and y (vertical direction). A single

functional form can be used to describe approximately all

four heads because they all have the same shape except they

are stretched and shrunk in the x and y directions. Because

the function that describes the head shape is not a familiar

and simple one, I will make the following arguments

assuming that the head shape is an ellipse. The real head

shape is not, of course, but the argument I make holds no

matter what function is used, and ellipses provide an easy

example. Also, I should describe the idealized ant head by a

three-dimensional ellipsoid, but the two-dimensional case

is simpler and the arguments are just the same for three

dimensions.

So, two of our idealized ants are represented in Figure 1c

with their heads described by the equation for an ellipse:

where x is the horizontal coordinate, y is the vertical co-

ordinate, s is the abdomen length, and L(s) and W(s) deter-

mine the length and width of the head (L for the vertical

axis of the ellipse and W for the horizontal axis). Note that

the values of L(s) and W(s) depend on the size s; when L(s)

is increased or decreased, the ellipse is stretched or com-

pressed along the vertical axis, with W(s) controlling the

ellipse size along the x axis in the same way. For the ideal-

ized small ant in Figure 1c, s = 1, L(1) = 1, and W(1) = 0.6,

and for the large ant, s = 2, L(2) = 3.3, and W(2) = 2.

How do W(s) and L(s), the head length and width, depend

on s, a measure of body size? Generally, we would expect

both length and width to increase smoothly (continuously)

with body size. For example, Darwin’s finches have beaks
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((aa)) Fiddler crab. Clipart courtesy of Florida Center for Instuctional Technology [http://etc.usf.edu/clipart]. ((bb)) Double logarithmic plot of Huxley’s
original data upon which his first paper [9] was based, with Uca pugnax claw weight on the ordinate and the crab weight (minus the claw weight) on
the abscissa. Data reported in Table I a of [1] for sexually immature male crabs.
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whose length depends (monotonically) on the calmodulin

concentration, and whose width depends (monotonically)

on expression of the developmental signal protein BMP4

during development [15,16] (Figure 3). (Note that size s

above might not necessarily be measured by the size of an

organ, but by the concentration of some signaling molecule

or the expression level of a transcription factor during a

particular period of the individual’s life.)

The essential feature illustrated in Figure 1c is that a single

equation describes both ant heads, and this equation

contains parameters (here L and W) that depend on some

size factor (here, abdomen length) and determines the head

size of the ant. Equations of this sort have been known for a

long time and are called ‘homogeneous’ or ‘self-similar’. Self-

similar equations have a remarkable property [17,18]: the

L(s) and W(s) can only be power functions (see Appendix),

such as:

L(s) = bsk

where b and k are constants. This means that whenever

evolution has conserved the genetic networks responsible

for pattern formation so that structures are, from one

individual to the next, very nearly the same shape (up to

stretching and compression), Huxley’s power-law relation-

ships must arise. Power laws do not just happen to work

sometimes - they are required whenever evolutionary

mechanisms preserve organ shapes (except for stretching or

shrinking in one or another direction).

TTwwoo  cchhaalllleennggeess  ffoorr  ccoonntteemmppoorraarryy  aalllloommeettrryy
Stephen Jay Gould [3] stressed the distinction between

allometric relations that occur within one species (like the

fiddler crab example) and those that occur across species

(for example, brain size versus body size for various

primates [19]). I have not honored this distinction above,

because my argument holds for both cases, and because the

question for any allometric relation ultimately is: how was

the scaling relation generated in embryogenesis? One

challenge in understanding allometry, then, is finding an

answer to this question. Presumably, any conserved pattern-

formation mechanism has been selected because it

permitted the existence of allometric relations so that one

mechanism would work for an individual of any size.

But even if the developmental mechanisms that produced a

particular allometric relation were known, there is still the

question of why evolution selected that particular allometry.

The allometric relation must serve a purpose, so what is it?

Questions about allometric relationships fall, then, into two

categories: How is the allometry generated and what is it

good for?

Explanations for the advantages of a particular allometric

relation often boil down to accounting for the value of the

exponent in the power law (k in the equations above).

Whenever we believe an allometry is indeed described by a

power law, it should be possible to attempt an explanation

for why the exponent in the power law has the particular

value it has. For example, the value of the exponent in

Kleiber’s law (the 3/4 power-law relationship between the

mass of an organism and its metabolic rate) has been accoun-

ted for by properties of transport in fractal distribution

systems [20]. In another example, the 3/2 power law relating

the number of neurons that provide the primate visual cortex

with information to the number of neurons that process that

information is claimed to arise because the primary visual

cortex increases the dimensionality of the neural represen-

tation of the visual world from two to three [21].

Another type of study derives from the mere existence of an

allomeric relation. If evolution is going to work on the

brain, the computational power of neural circuits must be

scaled to meet the demands placed on them. For example, a

visual system in primates of various sizes must be able to

process the information from retinas with different

numbers of photoreceptors, and the circuits that do this

cannot be completely redesigned every time the number of

photoreceptors is changed. What this means is that the

neural circuits in the brain must have what computer

scientists call a scalable architecture, a circuit design whose

computational power can be increased by making the

circuit larger. This requirement of scalability places strong
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Darwin’s or Galapagos finches. From Darwin’s account of his voyage on
HMS Beagle [23].



constraints on the types of computations that can be carried

out by brain regions [22], and an important challenge

resulting from allometry is to learn the design principles

that are used in building a brain with a scalable architecture.

The preceding discussion has focused on the logic of allo-

metric relations, but probably the greatest challenge is

understanding their developmental origin. Embryonic

growth occurs in a way that the correct size relations

between all organs result, so there must be general

mechanisms of development that govern organ size, and

these mechanisms must be remarkably robust. One of the

great challenges, then, is to discover how these size relations

are generated.
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AAppppeennddiixx

The purpose of this appendix is to show how power laws

arise inevitably in the context of self-similar functions,

those functions that describe the same shape except for

stretching and compression along two orthogonal axes.

The equation for an ellipse given above,

can be solved for y to give

and this has the form

y = f (x,s) = α(s) f (β(s)x,1)

where α(s) = L(s), β(s) = 1/W(s), and f (x,1) = √(1 – x2).

Any function g(x,st) that has the form 

g(x,st) = α(s)g(β(s)x,t)

is self-similar [18] so that the ellipse is a particular self-

similar function with t = 1 and g = f. Self-similar func-

tions are so called because the graph for any value of s

can be made to superimpose on the graph with s = 1 by

stretching or shrinking along the x and y axes. The

remarkable result is that α(s) and β(s) must be power

functions if they depend continuously on the size

parameter s [17]. I have considered only two-dimen-

sional functions here, but the arguments are the same for

three-dimensional functions. What this means is that

allometric relationships must result if organs for different

individuals are the same shape (up to stretching and

shrinking) and depend continuously on a size parameter.

The goal now is to show that α(s) and β(s) are, indeed,

power functions. I make the reasonable assumption that

these functions are differentiable, but weaker require-

ments give the same answer [17].

From the definition of a self-similar function, I can write

g(x,st) = α(s)g(β(s)x,t) = α(s)α(t)g(β(s)β(t)x,1), 

but it is also true (again by the definition) that

g(x,st) = α(st)g(β(st)x,1)

This pair of equations means that we get the functional

equations:

α(st) = α(s)α(t) and β(st) = β(s)β(t).

Note that α(1) = 1 (and β(1) = 1) because, when t = 1, we

find that α(s) = α(1)α(s).

To solve a functional equation of this sort, I now take the

derivative with respect to t (using the chain rule) of the

equation for α(st), and then set t = 1. The result is

dα(s)
s = α′(1)α(s)

ds

which can be rearranged to give

dα(s)         ds
= α′        , 

α(s) s

and this equation can be integrated to give

log(α(s)) = k log(s)

where I have defined k ≡ α′(1) and made use of the fact

that α(1) = 1. Thus, α(s) is the power law

α(s) = sk,

with the same result for β(s) except that the value of the

exponent can be different. The prefactor b in the power

laws that appear in the main text would be found from

g(0,1) for the axis in the y direction and from solving

g(x,1) = 0 for the axis in the x direction because I have

chosen the origin of the coordinate system to fall at the

center of the plane curve described by the self-similar

function g.
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