
“Th e cell in culture, indeed, is an adaptable organism. 
Unless conditions are strictly defi ned, the answers will 
have little relevance to the questions asked. …Th ere is one 
point, however, that cannot be emphasized enough: While 
it is true that the usefulness of a culture system is 
increased by how far it is developed to mimic the in vivo 
situation, we use cultured cells because the in vivo events, 
in fact, are not well understood. …. We use cultured cells 
because we can simplify the milieu to understand normal 
physiology. We also use them to learn how to manipulate 
gene expression. While the molecular biologists reorder 
the genes, the cell and developmental biologists, by 
defi ning the cellular (micro)environment, may call the 
shots in the long run” [1]. Nearly 30 years later, it is time 
to ask: where to now?

Context in modeling epithelial tissues
Control of context - defi ned here as the micro environ-
ment and architecture of a cell culture - is essential to 
both the design and the interpretation of experiments 
performed in three-dimensional (3D) culture. In these 
cultures, multiple microenvironmental parameters, such 
as cellular and tissue stiff ness, composition of the 

extracellular matrix (ECM) and media (a substitute for 
lymph and blood), and cell-cell interactions, operate as 
they do in vivo and profoundly aff ect function (see 
Lelièvre and Bissell [2] for a comprehensive review of the 
importance of context in 3D cultures). We know that 
tissue architecture can be approximated in 3D culture; in 
particular we have succeeded in recreating the milk-
producing mammary glandular epithelium and polar 
acini - the ductal tree - of the human breast in culture 
(for a discussion of why it is preferable to use ‘in culture’ 
rather than ‘in vitro’ see [1]) (Figure  1). We also know 
that signaling pathways in 3D cultures are regulated in a 
fundamentally diff erent way than in cells cultured on 
tissue culture plastic (referred to as 2D culture) [3]. Finally, 
there is substantial evidence that disruption of tissue 
architecture is a prerequisite to malignancy [4,5]. Th us, we 
must be concerned about the structural elements of the 
model system that are crucial for functional integrity.

Epithelia are structurally and functionally defi ned by 
the polarized distribution of organelles and proteins: 
function, growth and survival of epithelial cells correlates 
with the degree of ‘tissue’ polarity. Formation of polarized 
epithelial tissues arises from a dynamic reciprocity between 
signals from the microenvironment and the genome [6] 
leading to the changes in the pattern of gene expression. 
Th e process of tumorigenesis disrupts both the 
microenvironment and the polarity of the aff ected tissues 
[5]. Substantial progress has been made towards under-
standing the integration of the signals that lead to both 
formation and disruption of polarity [7]. In the context of 
the recreation of mammary gland acini in culture, a 
recent study in BMC Biology from the laboratory of 
Sophie Lelièvre (Plachot et al. [8]) reopens the dialog on 
the importance of apical polarity in modelling mammary 
function and how this could be aff ected by culture 
conditions.

Using cell lines to study tissue architecture in 
3D cultures
A fully formed organ is exponentially more complex than 
cells in culture, but cultivating cells in 3D begins to 
bridge the gap in function and consequently retains some 
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of the knowledge that is lost when we destroy the 
structure of the organs and tissues by separating the cells 
and culturing them in 2D. Th ere is much wisdom in the 
architecture of the organs. How else could there be such 
a rich array of functional diff erentiation in diff erent 
organs given that the DNA sequence is the same in all the 
ten trillion cells of an individual? Primary cells isolated 
from tissues are an ideal starting point for 3D cultures 
since such cells still contain some of the memories of the 
organ. Unfortunately, primary cells are in limited supply, 
especially from humans. In addition, they are not easy to 
manipulate genetically, and individual samples will have 
considerable heterogeneity that could interfere with 
experimental reproducibility. Last but not least we still 
have not found a way of making all the relevant cells 
survive in culture.

As an alternative to primary cultures, cell lines have 
been developed from both normal and tumor tissues. 
Where some fundamental comparisons are made and 
similarities established between the primary cells and the 
respective cell line, then the benefi ts of studying cell lines 
are many. Th ese include such features as tractability, 
reproducibility, availability and homogeneity, although 
these traits need to be recalibrated from time to time in 
relation to the corresponding primary cells. Cell lines 
grown in 3D reduce the complexity of the in vivo state 
and allow us to manipulate culture conditions and func-
tions. In addition, they could provide keys to the informa-
tion encoded in the tissue architecture.

Many of the 3D culture studies of non-malignant human 
breast epithelial cells have been performed using two 
breast epithelial lines, HMT-3522-S1 (S1) [9] and MCF10A 
[10], both of which were featured in the initial publication 
that described the 3D culture assays of human breast [11]. 
Both cell lines were isolated from fi brocystic breast tissues, 
and both form relatively homo geneous organotypic acinar 
structures resembling in vivo terminal ductal lobular units 
when placed in 3D culture in laminin-rich extracellular 
matrix (lrECM) (Figure 1). We refer to any extracellular 
matrix gel rich in laminin-111 including the commercial 
products Matrigel™ and Cultrex® as lrECM . Since the 
initial publication, MCF10A and S1 cells have only rarely 
both been used in the same study, and so it is welcome that 
Plachot et al. [8] began their study with a comparison of 
these lines so often used separately to study mammary 
gland function and polarity. Th ey measured the baso-
apical polarization of acini formed in 3D lrECM by 
immunofl uorescent visualization of basal integrins and 
apical tight-junction proteins. Careful attention was paid 
to growing both cell lines according to established 
protocols for each culture condition.

Plachot et al. [8] fi nd that both cell lines establish basal 
polarity; however, the acini-like structures from MCF10A 
cells continue to grow with increasingly large apical 
cavities as a function of time and acini grown from S1 
cells do not always contain obvious lumina or only form 
small ones. Overall, however, S1 cells have a signifi cantly 
higher frequency of baso-apically polarized acini 
compared with MCF10A. Indeed, the MCF10A cells did 
not appear to establish any apical polarity at all under the 
usual 3D culture conditions. Th is was demonstrated by 
multiple markers, including many tight junction proteins. 
Plachot et al. [8] then went on to investigate in more 
detail the conditions in which S1 cells could become 
apically polarized and investigated the importance of the 
media and ECM composition in this process.

The importance of the medium
Despite many studies in the 1950s and 60s that showed 
the importance of medium composition, very few scientists 
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Figure 1. Architecture and morphology of the mammary gland. 
(a) A cartoon representation of the structure of the epithelial tissue 
of the human mammary gland indicating a large duct branching 
into a lobule. (b) A representation of a cross section cut through 
the bilayered epithelia: many bilaryered acini that are part of the 
lobule would be apparent yet their direct connection to the lobule 
‘disappears’ in the 2D cross section. (c) A magnifi ed cross section 
of the terminal ductal lobular unit (TDLU) referred to as an acinus. 
Acinar polarity is demonstrated where apical proteins face the lumen 
formed by luminal epithelial cells and the basement membrane 
(BM) is in contact with myoepithelial cells (d) S1 cultured cells form 
a single layered acinus-like structure in 3D culture with apico-basal 
polarity despite the lack of the myoepithelial layer.
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pay close attention to the composition of the medium in 
which they grow their cells. However, the composition of 
the media is as consequential as the substratum for how 
the cells behave (for a detailed discussion see [1]). S1 cells 
are grown in a defi ned media with only a few essential 
additives [9] whereas MCF10A cells are grown in 5% 
horse serum plus additional additives [10]. Serum has 
been a boon for cell biologists as it can support the 
growth of most cells, but the plethora of components in 
serum are still poorly defi ned and the product is subject 
to considerable batch-to-batch variation. Th erefore, experi-
ments using serum cannot be rigorously controlled.

As a proof of the above principle, Plachot et al. [8] fi nd 
that the standard medium used for MCF10A cells nearly 
abolished apical polarity when used to grow S1 cells in 
lrECM. Conversely, when MCF10A cells were cultured in 
S1 medium, some of the acini (about 5%) organized 
apical polarity. Th ere are clearly cell-intrinsic diff erences 
between the two cell lines because under these conditions 
65% of S1 acini contained apical polarity. Nevertheless, it 
is clear that MCF10A cells went from 0% to 5% and S1 
from 5% to 65% apical polarity with the change of 
medium [8].

The importance of the extracellular matrix
It took decades from the classical studies of Michalo-
poulos and Pitot [12] and Emerman and Pitelka [13] on 
fl oating collagen gels before other laboratories started to 
pay serious attention to the importance of ECM in tissue-
specifi c gene expression in cultured cells. Th e presence of 
a basement membrane (BM) in fl oating collagen gels was 
shown initially by electron microscopy [13]. Studies from 
the Bissell laboratory established that cells on fl oating 
collagen gels [14] produce an endogenous BM and that 
the BM molecules are crucial for formation of tissue-
specifi c form and function [15-17]. Th e BM is a form of 
ECM rich in collagen IV and tissue-specifi c laminins that 
underlies epithelia and is in direct contact with the epi-
thelial cells as well as with other cell types (for example, 
endothelial and fat cells). In vivo, epithelial polarity is 
established along with the formation of a BM as organs 
are formed. Laminin-111 is an important component of 
both the embryonic and mammary gland BM as well as a 
major component of lrECM; it usually polymerizes into a 
multivalent signaling scaff old at the surface of cells and 
tissues. Studies on embryonic development previously 
reported that type IV collagen likely stabilizes BMs [18] 
and is necessary for embryonic development. Th e assem-
bled BM serves multiple functions as a scaff old, a barrier 
and a signaling entity necessary for organization of the 
tissues and organs.

Petersen et al. [11] showed formation of a human-
derived BM when human breast cells were grown in 
mouse-derived lrECM gels. Plachot et al. [8] also fi nd a 

continuous BM in their 3D cultures. What is important 
here is their fi nding - reminiscent of the embryonic BM - 
that type IV collagen most likely stabilizes the 
laminin-111 polymer in 3D cultures of mammary cells, 
and that this may be directly related to the capacity of S1 
acini to establish apical polarity (Figure 2).

Plachot et al. [8] selected the S1 cell line for further 
study because of its ability to form apical polarity, and 
compared the behavior of cultured S1 cells on multiple 
substrata. A number of biological matrices, such as those 
isolated from the EHS tumor [19] (Matrigel™ or Cultrex® 
BM) and synthetic substrata (for example, PuraMatrix™), 
were tested. Th e only substrata that allowed formation of 
acini with basal as well as apical polarity were those that 
gelled and contained laminin-111 [8]. Th is is curious 
given that chicken basal lamina (CBL) has laminin-111 
and type IV collagen, but did not encourage endogenous 
BM formation or apical polarity. CBL does not gel and 
must be used as a drip of extracted proteins into the 
culture media and a possible explanation for the lack of 
S1 polarity could be that this matrix can not be organized 
to model the ‘stiff ness’ of the mammary gland. Evidence 
is accumulating that the stiff ness of the micro environ-
ment infl uences cell behavior, and thus the stiff ness of the 
substrata chosen should approach that of the tissue being 
modeled. Th e mammary gland is embedded in a ‘soft’ 
fatty microenvironment and lrECMs (such as Matrigel™ 
and Cultrex® BM or a mix of collagen gels and 
laminin-111) approximate the softness/stiff ness of this 
microenvironment [20,21].

Use of substrata derived from EHS tumors (Matrigel™ 
and Cultrex® BM) is not without its drawbacks: these BM 
substitutes are produced by a tumor grown in a mouse, 
and they contain many proteins in addition to type IV 
collagen and laminin-111 and other components that, like 
serum, can infl uence cell behavior. In addition, the 
commercial preparations are expensive and subject to 
variation from batch to batch. If batches are pre-screened, 
however, they can still allow physiological behavior in a 
way that the available synthetic substrata do not yet. In 
summary, exogenous scaff olds cannot com pletely 
substitute for the natural BM of a tissue, but can be 
tailored to approximate the ECM of a specifi c cell or tissue.

Plachot et al. [8] devised a modifi ed high-throughput 
method for delivery of lrECM proteins. Th ey dripped 
lrECM onto S1 cells on a glass surface with no pre-
coating - as opposed to what was done before on tissue 
culture plastic [22]. Because mammalian cells do not 
adhere well to glass, under these conditions S1 cells in 
combination with lrECM form acini by organizing the 
lrECM material around them. Th is method reduces the 
amount of lrECM used and thus the cost of the assay. It 
also shortens the length of the original assay to 8 days 
instead of 10. Another modifi cation of our on-top assay 
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has reduced the time needed for formation of acini to as 
little as 4 days [23], but this method does not reduce the 
amount of the lrECM any further.

The importance of the establishment of 
baso-apical polarity
As well as showing the importance of culture conditions 
and choice of cell line in devising successful 3D systems, 
the study by Plachot et al. [8] opens up a number of 
questions. Both the S1 and MCF10A cell lines produce 
‘acini’ with basal polarity: what properties shared by the 
two cell lines confer this level of organization that is 
otherwise absent in tumor cells? On the other hand, the 
diff erences in apical polarity are intriguing, and it is 
appropriate to ask what are the functional consequences 
of this important diff erence? Whereas these questions 
were not addressed in Plachot et al. [8], current 
technology should allow us to search for the changes in 
the genes involved in establishing apical and basal 
polarity in the two cell lines, and the consequences of loss 
of baso-apical polarity to functional integrity.

Where to now? Th e biologist’s toolbox has expanded 
immeasurably, but making meaningful progress requires 
careful consideration and optimization of any culture 
model that makes use of these tools. Precise manipulation 
of primary cells in 3D culture is increasingly possible, and 
many other tissues besides mammary gland are poised 
for the investigation of dynamic reciprocity in 3D 
organotypic cultures. An additional area of research that 
promises to provide considerable insight is the co-culture 
of diff erent cell types in 3D as was done for luminal 
epithelial and myoepithelial cells of the breast [24]. Here 
correct polarity was shown to be dependent on the 
presence of normal myoepithelial cells. In more recent 
studies where heterogeneous interactions were examined, 
S1 cells and endothelial cells were cultured together, the 
polarity status of the S1 acini determined whether or not 
endothelial cells could migrate to epithelial cells [25]. 
Th ese studies, even if still preliminary, indicate the time 
has fi nally arrived for seriously attempting to create 
tissue and organ surrogates in 3D cultures. But it is clear 
that tissue polarity will continue to play a center role.

Inman and Bissell Journal of Biology 2010, 9:2 
http://jbiol.com/content/9/1/2

Figure 2. Organization of basement membrane superstructure. A simplifi ed and hypothetical diagram showing how BM might be assembled 
at the surface of a cell or an acinus. (a) Top: acinus surrounded by laminin-111 (green). Bottom: the laminin-111 polymerizes and engages integrins 
(blue) on the basal face of the epithelial cells. However, the laminin-111 polymer is not stably anchored into a supramolecular structure. In this case, 
apical polarity is not established and tight-junction proteins (pink) do not get organized on the apical surface of the acini. (b) Laminin-111 polymer 
(green) is anchored by type IV collagen (red); co-localization of the two proteins is shown by yellow. The proteins are now physically connected by 
nidogen (black). Basal integrins (blue) are organized and are likely to be held in a spatial orientation that allows proper signaling for establishment 
of apical polarity. Tight-junction proteins become organized apically in the acinus, and apical polarity is established.
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