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Abstract

Background: The mitogen-activated protein (MAP) kinases p44ERK1 and p42ERK2 are crucial
components of the regulatory machinery underlying normal and malignant cell proliferation. A
currently accepted model maintains that ERK1 and ERK2 are regulated similarly and
contribute to intracellular signaling by phosphorylating a largely common subset of substrates,
both in the cytosol and in the nucleus. 

Results: Here, we show that ablation of ERK1 in mouse embryo fibroblasts and NIH 3T3
cells by gene targeting and RNA interference results in an enhancement of ERK2-dependent
signaling and in a significant growth advantage. By contrast, knockdown of ERK2 almost
completely abolishes normal and Ras-dependent cell proliferation. Ectopic expression of
ERK1 but not of ERK2 in NIH 3T3 cells inhibits oncogenic Ras-mediated proliferation and
colony formation. These phenotypes are independent of the kinase activity of ERK1, as
expression of a catalytically inactive form of ERK1 is equally effective. Finally, ectopic
expression of ERK1 but not ERK2 is sufficient to attenuate Ras-dependent tumor formation in
nude mice. 

Conclusion: These results reveal an unexpected interplay between ERK1 and ERK2 in
transducing Ras-dependent cell signaling and proliferation. Whereas ERK2 seems to have a
positive role in controlling normal and Ras-dependent cell proliferation, ERK1 probably affects
the overall signaling output of the cell by antagonizing ERK2 activity. 

BioMed Central
Journal
of Biology

Journal of Biology 2006, 5:14

Open Access

Published: 28 June 2006

Journal of Biology 2006, 5:14

The electronic version of this article is the complete one and can be
found online at http://jbiol.com/content/5/5/14

Received: 11 January 2005
Revised: 17 February 2006
Accepted: 6 April 2006

© 2006 Vantaggiato and Formentini et al.; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.biomedcentral.com/info/about/charter/


Background 
The small GTPase Ras, its relatives and their effectors are

central to the signaling networks that are involved in a

variety of regulatory processes in the cell, from proliferation

and tumorigenesis to development and synaptic plasticity

[1-3]. The signaling cascade involving the Raf, MEK

(mitogen-activated protein (MAP) or extracellular signal-

regulated (ERK) kinase) and ERK families of kinases is among

the best characterized pathways downstream of Ras. This sig-

naling module couples receptor-mediated activation of Ras to

cytoplasmic and nuclear events, leading to phosphorylation

of key structural and regulatory components [4-8].

Approximately 15% of human cancers contain activating

mutations in one of the Ras genes [1,9]. This figure under-

represents the actual involvement of Ras pathways in

tumorigenesis, however, as other downstream signaling

components, such as B-Raf, are frequently found in their

oncogenic form in tumors in which Ras is not itself

mutated [10]. Importantly, though, induction of missense

activating mutations or deletions in regulatory domains

might not be the only mechanism leading to deregulation

of the Ras-ERK pathway and malignancy. Although there is

no evidence so far to suggest that either MEK1/2 or ERK1/2

proteins can become oncogenic in spontaneous tumors,

their activity is massively upregulated in several human

cancers [11]. For instance, in human leukemia samples,

both MEKs and ERKs are often hyperphosphorylated and

activated, suggesting a causal relationship between stimu-

lation of the Ras-ERK pathway and tumorigenesis and pro-

viding a conceptual framework for potential therapeutic

targeting (as reviewed in [12]). 

One important aspect of the regulation of the Ras-ERK

cascade is the specific, non-redundant role of protein iso-

forms in this pathway. Gene-targeted and transgenic mouse

lines have proved invaluable in determining specific pheno-

types associated with most signaling components in the

pathway, including lines defective in one of all three Ras

proteins (K-ras, N-ras and H-ras), the Raf isoforms c-Raf-1,

Raf-A and Raf-B, the MEKs MEK1 and MEK2, the Ras

GTPase-activating proteins GAP-1 and NF1, the Ras guanine

nucleotide-releasing factors RasGRF1 and RasGRF2, and the

adaptor proteins Sos1, Grb2 and Shc [1,4,13-24]. Moreover,

for some components of the pathway, such as c-Raf-1 and

B-Raf, significant structural differences are the basis not only

of their differential regulation, but possibly also of their

oncogenic potential [25]. 

Surprisingly, relatively little is known about possible specific

roles for the two major ERK isoforms, ERK1 (p44) and ERK2

(p42). These two proteins are co-expressed in virtually all

tissues but with a remarkably variable relative abundance,

ERK2 being the predominant isoform in brain and

hematopoietic cells [12,26,27]. Given the extensive amino-

acid identity between the two molecules and their appar-

ently similar spatio-temporal regulation, the current

working model regards them essentially as interchangeable.

Nevertheless, important recent evidence suggests that there

could be quantitative differences in ERK1 and ERK2 dynam-

ics and that these could have a significant role in their regu-

lation. ERK1-deficient mice are viable, with no obvious

compensatory upregulation of ERK2 protein levels but

showing a deficit in thymocyte maturation [28]. A recent

T-cell-specific knockout of ERK2 further supports a crucial

role for MAP-kinase signaling in the immune system [29].

On the other hand, global ERK2-deficient mice die early in

development, showing that ERK1 cannot compensate in the

embryo for ERK2 [30-32]. 

One possible interpretation of these data is that although

ERK2 is essential for transduction of signals, ERK1 could

instead have an accessory role, possibly enabling a fine

tuning of ERK2 activity. Two related lines of evidence

strongly support the idea that ERK1 acts in a complex

manner, at least in certain circumstances, by attenuating

ERK2 activity. First, both in fibroblasts and in neurons

derived from ERK1-deficient mice, stimulus-dependent acti-

vation of ERK2 (but not its basal activity) was found to be

significantly upregulated, as revealed by the increased level

of ERK2 phosphorylation and immediate-early gene tran-

scription [28,33]. Second, enhancement of ERK2-dependent

signaling in the nervous system of the ERK1 mutant mice

has been linked to improvement of certain forms of learn-

ing and memory [33]. 

To investigate whether such mechanisms are also impli-

cated in the control of cell proliferation, we examined ERK

activation and growth rates both in genetically altered

mouse fibroblasts and using RNA interference (RNAi)

technology [34-36].

Results and discussion 
Enhancement of ERK2 signaling in ERK1 mutant
fibroblasts provides a significant growth advantage
Our own previous work [33] has shown that in primary

neurons of the central nervous system, neurotransmitter

stimulation results in a significant hyperactivation of ERK2

in the absence of ERK1. On the basis of these findings, we

proposed a competition model between ERK1 and ERK2 in

their interaction with the upstream kinase MEK. According

to this model, we speculated that in the absence of ERK1,

the pool of ERK2 molecules could be more efficiently acti-

vated, resulting in an increased downstream transmission of

the signal [33]. 
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We have now also observed that in serum-starved mouse

embryo fibroblasts (MEFs) stimulated with 20% serum,

ERK2 activation was more sustained in ERK1 mutant cells

than in control fibroblasts (Figure 1a). When serum-starved

MEFs were stimulated with 20% serum, ERK2 activation

was more sustained in ERK1 mutant cells than in control

fibroblasts (Figure 1a). Quantification of three independent

experiments shows that ERK2 activation is approximately

two-fold greater in ERK1 mutant cells than in wild-type cells

(Figure 1b). Enhanced ERK2 activation also resulted in

increased transcription of immediate-early genes, such as

c-fos and zif-268, as indicated in Figure 1c. As the observed

change in ERK2 activation in ERK1 mutant MEFs might

have consequences at the level of cell proliferation, we per-

formed a proliferation assay comparing wild-type and ERK1

mutant cells at two different serum concentrations. The

results in Figure 1d clearly suggest not only that ERK1 might

be dispensable for cell proliferation but also that its absence

could provide a significant growth advantage. Together,

these data suggest that removal of ERK1 could facilitate
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Figure 1
ERK1 ablation in mouse embryo fibroblasts results in enhancement of ERK2 activity and facilitates cell proliferation. (a) Wild-type (+) and
ERK1-deficient (-) mouse embryonic fibroblasts (MEFs) were serum starved for 24 h and then stimulated with 20% serum for the indicated times.
Western blotting was performed with both anti-ERK and anti-phospho-ERK antibodies. (b) Bands from (a) were quantified and the fold increase in
phospho-ERK2 levels over total ERK2 levels calculated. (c) RNA from cells stimulated as in (a) was subjected to an RNase protection assay and
probed for either c-fos or zif-268. A histone H4 probe was used as internal standard for normalization. (d) Wild-type (+) and ERK1-deficient (-)
MEFs were seeded in triplicate in the presence of either 10% or 2.5% serum and cells were counted after the indicated times. Data are the
mean ± standard error of the mean (SEM) of three independent experiments.
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ERK2-dependent signaling, cell growth and overall prolifer-

ation in MEFs. Importantly, the same results were obtained

with MEFs derived from mice either backcrossed to C57Bl/6

background (seven generations) or in a mixed background

(C57Bl/6 and 129 SvJ), ruling out a genetic background

effect (data not shown). 

Specific knockdowns of ERK1 and ERK2 demonstrate
a differential role for the two kinases in cell signaling
One of the limitations of the global gene-targeting approach

is that adaptations over time might occur in the mouse line,

possibly producing secondary phenotypes that are not

directly linked to the mutation. Therefore, to independently

confirm and extend previous findings, we took advantage of

RNAi technology by introducing transient knockdowns

(KD) of both ERK1 and ERK2 [37-40]. ERK1- and ERK2-

specific short hairpin RNAs (shRNAs) were expressed by

means of a lentiviral vector (LV) in MEFs under the control

of the H1 promoter (Figure 2a). Expression of ERK2 was

reduced to less than 10% of the wild-type level, whereas

ERK1 became essentially undetectable (Figure 2a). After LV

infection and subsequent puromycin-resistance selection,

cells were serum starved and subsequently stimulated with

20% serum. As shown in Figure 2b, although ERK1 KD

resulted in a significant increase in ERK2 activation profile,

loss of ERK2 only marginally affected ERK1 phosphoryla-

tion. A quantification and normalization of the data is

found in Figure 2c. To determine the consequences of these

gene ablation experiments on cell growth we performed

growth curves at 10% serum of ERK1 KD and ERK2 KD cells

(Figure 2d). Whereas inhibition of ERK2 dramatically

reduces cell growth, loss of ERK1 significantly facilitates

proliferation. These observations are in accordance with the

data obtained in the ERK1-/- MEFs (see Figure 1) and further

support a potential modulatory role of this kinase in cell-

signaling control. Importantly, ablation of ERK2 is suffi-

cient to significantly slow down cell proliferation, a

phenotype that strongly resembles the effect of MEK

inhibitors such as PD98059 or UO126 ([41,42] and

reviewed in [43]).

Differential MEK-ERK1 and MEK-ERK2 interactions
To further explore the molecular mechanisms underlying the

observed effects on cell physiology of the two ERK kinases,

we generated stable ERK1- and ERK2-specific KD clones in

NIH 3T3 cells. As indicated in Figure 3a (left panel), silencing

of either ERK1 or ERK2 was as effective in NIH 3T3 cells as in

MEFs and did not alter expression of the remaining isoform

(Figure 3a, right panel). Moreover, expression of oncogenic

H-RasQ61L had no effect on the protein levels of either ERK1

or ERK2 (Figure 3b, right panel), regardless of the genetic

background (wild type, ERK1 KD or ERK2 KD). The latter evi-

dence allowed us to test directly the consequences of

ERK-specific gene silencing in a Ras-sensitized background

(see below and Figure 4).

One of the assumptions of the competition model is that in

activated cells MEK-ERK complexes should preferentially

contain ERK2. Moreover, in the absence of ERK1 we would

expect to observe a significant increase in MEK-ERK2 inter-

actions. To investigate this possibility and to provide a

direct support for the model, we performed immunoprecip-

itation studies with a specific antibody recognizing both

MEK isoforms and then determined the composition of

ERK1 and ERK2 in the complex with two distinct antisera.

As indicated in Figure 3b, in the absence of ERK1, binding

of ERK2 to MEK appears slightly but significantly increased.

Quantification of three experiments in Figure 3c demon-

strates that ERK2 levels associated with MEK in the absence

of ERK1 are 70% higher than in the control extracts. We

detected a much smaller change in ERK1 levels in ERK2 KD

cells (20%), however. This could possibly be due to a com-

bination of various factors: the presence of some detectable

residual ERK2 protein in the MEK complex from ERK2 KD

cells; a lower expression level of ERK1 in comparison with

ERK2; or a potentially lower affinity of ERK1 for MEK1/2.

ERK1 knockdown in NIH 3T3 cells facilitates growth,
whereas ERK2 knockdown inhibits it
Cell-cycle progression is highly regulated in multicellular

organisms, and the loss of any regulatory mechanism could

result in tumor formation. Cancer cells can grow in multiple

layers and in anchorage-independent conditions, showing

less ordered growth and reduced cell-cell contact inhibition.

To determine the role of ERK1 and ERK2 in cell growth and

Ras-mediated transformation, we made knockdowns of

both ERK isoforms in NIH 3T3 cells, either in a wild-type or

in oncogenic H-RasQ61L background, and performed a

colony-formation assay, a common test for cell transforma-

tion. In this assay, cells transformed with oncogenes such as

Ras produce colonies of larger size than cells transfected

with vector alone [44]. Importantly, this test does not rely

on stable transfectants, as selection and scoring are done

within 10 days of transfection. 

Representative plates of each transfection are shown in

Figure 4a. The summary data shown in Figure 4b clearly

indicate that ERK2 knockdown negatively affects both

normal and Ras-mediated cell growth. Although loss of

ERK1 caused a significant increase in the growth of wild-

type cells, however, the effect of the ablation of this MAP

kinase on H-RasQ61L-dependent proliferation was surpris-

ingly marginal, and unexpectedly in the direction of a small

decrease rather than an increase. These data confirm that

ERK1 can negatively modulate normal cell growth in NIH

3T3 cells. It seems, however, that loss of ERK1 in ERK1 KD

14.4 Journal of Biology 2006, Volume 5, Article 14 Vantaggiato and Formentini et al.                                               http://jbiol.com/content/5/5/14

Journal of Biology 2006, 5:14



cells cannot further increase Ras-mediated cell transform-

ation but rather causes a small but consistent reduction in

the colonies produced by this potent oncogene. Although

this fact suggests that overexpression of oncogenic Ras could

determine a ceiling effect in the rate of cell growth, it also

leaves open the possibility that in such conditions of abnor-

mally high signaling activation, ERK1 might still have a role

qualitatively similar to that of ERK2 and could be positively

engaged in the generation of cell-proliferation responses.

Ectopic expression of ERK1 but not of ERK2 results
in the inhibition of Ras-dependent cell growth
To provide further independent and reverse confirmation

that the biochemical and proliferation effects observed in

the ERK1 mutant MEFs and ERK1 knockdown NIH 3T3 cells

are directly linked to the expression level of this protein, we

established NIH 3T3 clones individually expressing ERK1,

ERK2, ERK1K72R (a kinase-defective form), p38SAPK1 (stress-

activated protein kinase, a negative control) and H-RasQ61L,
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Figure 2
ERK-specific gene silencing unmasks differential roles for ERK1 and ERK2 in cell signaling and proliferation. (a) Schematic representation (top) of the
proviral vector form used in shRNA-mediated RNA interference. �U3, R and U5 constitute a chimeric long terminal repeat (LTR) of the HIV-1
5� LTR with a deletion in U3 abolishing LTR mediated transcription; SD and SA, splice donor and acceptor sites; � encapsidation signal including the
5� portion of the gag gene (GA); RRE, Rev-response element; cPPT, central polypurine tract; shRNA, small hairpin RNA; H1, human H1 promoter;
mPGK, mouse phosphoglycerate kinase promoter; Puro, puromycin-resistance gene; WPRE, woodchuck hepatitis virus post-transcription regulatory
element. The western blot (bottom) shows expression levels of ERK proteins in wild-type MEFs transduced with equal amounts of lentiviral vectors
carrying the indicated knock-down (KD) shRNA cassette or the corresponding control sequence (ctr). �-tubulin was used as a loading control.
(b) Wild type (+), ERK1 KD or ERK2 KD MEFs were serum starved for 24 h and then stimulated with 20% serum for 5, 10, 30, 60 and 120 min.
Western blots were analyzed with anti-phospho-ERK and anti-ERK antibodies, as in Figure 1. (c) Bands from (b) were quantified and fold increases in
phospho-ERK2 or phospho-ERK1 levels over total ERK2 or total ERK1 levels calculated. Mean ± SEM of three experiments is indicated. (d) Growth
curve of wild-type, ERK1 and ERK2 KD fibroblasts and their corresponding controls, seeded in triplicate in the presence of 10% serum and 2 �g/ml
puromycin and counted after the indicated times. The data are the mean of three independent experiments ± SEM.
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all epitope tagged (Figure 5a). All constructs were expressed

at comparable levels. The proliferation profile of three inde-

pendent clones per genotype is shown in Figure 5b. RasQ61L

provided a significant growth advantage to NIH 3T3 clones,

but none of the other constructs alone affected basal levels

of cell proliferation. These data suggest that neither ERK1

nor ERK2 overexpression per se can alter proliferation of

untransformed cells. This is in marked contrast with the

RNAi data (see Figure 4) and with the effect of the MEK

inhibitor UO126 on the growth of wild-type cells (Figure

5b). Possibly, protein levels achieved with a relative mild

level of ectopic ERK1 expression are not sufficient to alter

the MEK-ERK2 ratio in the basal state. It is also possible,

however, that the effect of ERK1 could be unmasked in

deregulated growth conditions, such as in the presence of

oncogenic Ras.

Therefore, we next asked whether ectopic expression of

these kinases might interfere with growth of transformed

cells, by examining the growth of double transfectants

containing oncogenic Ras and one of the wild-type or

mutant kinases described above. The underlying idea, taken

from previous genetic studies in Drosophila and in mouse,

was that the possible effect of a ‘modulator’ of cell growth

might be manifested in a sensitized background, here pro-

vided by RasQ61L. Surprisingly, expression of ERK1 kinase

resulted in a significant reversion of the cell-proliferation

effect caused by oncogenic Ras, whereas neither ERK2 nor

p38 seemed to affect the overall growth rate (Figure 5c,d). 

These data indicate that ERK1 protein expression counter-

acts Ras-dependent cell transformation. Importantly, this

effect seems to be largely independent of ERK1’s kinase

activity but rather is due to protein-protein interactions, as

the ERK1K72R mutant was almost as effective as wild-type

ERK1. Strikingly, overexpression of ERK2 has little effect on

cell proliferation, suggesting that levels of this protein are

not rate-limiting, at least in this cell type. 
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Figure 3
ERK-specific gene silencing in NIH 3T3 cells differentially affects MEK-ERK interactions. (a) ERK1- and ERK2-specific NIH 3T3 clones with stable
shRNA expression only (left) or also co-transfected with H-RasQ61L (right) were isolated and checked for ERK expression levels by western blot
analysis, as in Figure 1. Two clones (I and II) for each transfection are shown. (b) Lysates from wild-type NIH 3T3 control, ERK1 KD and ERK2 KD
clones growing in 10% serum were incubated with anti-MEK-1/2 polyclonal antibody. Immune complexes (IP) were resolved in SDS-PAGE and
western blotted (WB) with polyclonal anti-ERK1 (sc-94, top) and anti-ERK2 (sc-153, bottom) antibodies. (c) Bands from (b) were quantified and the
relative fold increase in ERK1 and ERK2 levels in the knockdown samples over the corresponding wild-type controls were calculated (only samples
probed with anti-ERK antibody sc-94 are indicated). Data are representative of three independent experiments, expressed as mean ± SEM. 

E
R

K
 fo

ld
 in

cr
ea

se ERK1
2

1.5

1

0.5

0

ERK2

WB: anti-ERK
1/2(sc-94) 

WB: anti-ERK
1/2(sc-153) 

IP: anti-MEK-1/2 

ER
K2

 K
D

ER
K1

 K
D

Co
nt

ro
l

ER
K1

 ct
r

ER
K2

 ct
r

ERK
ERK1
ERK2 ERK

ERK1
ERK2

I   II I   II I   II I   II I   II I   II I   II I   II I   II I   II

Ra
s

Ra
s +

 E
RK

1 
KD

Ra
s +

 E
RK

1 
ctr

Ra
s +

 E
RK

2 
KD

Ra
s +

 E
RK

2 
ctr

Con
tro

l

ERK2 K
D

ERK1 K
D

Con
tro

l
ERK2 K

D

ERK1 K
D

Con
tro

l
ERK2 K

D

ERK1 K
D

(a)

(b) (c)



http://jbiol.com/content/5/5/14 Journal of Biology 2006, Volume 5, Article 14 Vantaggiato and Formentini et al.  14.7

Journal of Biology 2006, 5:14

Figure 4
ERK1 knockdown in NIH 3T3 cells facilitates growth in colony formation assays, whereas ERK2 knockdown shows inhibitory effects. NIH 3T3 cells
were transfected as indicated with the specific shRNA construct (KD) against ERK1 or ERK2 or the corresponding control sequence (ctr), all cloned
into the pSUPER_Puro vector; cells were transfected either with shRNA alone or also with an oncogenic form of H-Ras (RasQ61L), and colony
formation was scored after 10 days. (a) Representative plates; (b) graph of the number of colonies formed (the result of four independent
experiments, expressed as mean ± SEM). Asterisks indicate a statistically significant genotype effect calculated from a post-hoc comparison in
one-way ANOVA (Scheffe’s test: control versus ERK1 KD; control versus ERK2 KD; RasQ61L versus RasQ61L-ERK1 KD; RasQ61L versus 
RasQ61L-ERK2 KD); single asterisk, p < 0.01; double asterisk, p < 0.0001.
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Ectopic expression of ERK1 attenuates Ras-dependent
growth in transformation assays
To further confirm the role of ERK1 and ERK2 in Ras-

dependent cell transformation, we transiently transfected both

ERK isoforms into NIH 3T3 cells and performed colony for-

mation assays. Oncogenic Ras (RasQ61L) was co-transfected

into NIH 3T3 cells with a control vector (pMEX) alone or with

a vector containing either ERK1, ERK2, or p38. Summary

results after 10 days are shown and quantitated in Figure 6a.

RasQ61L alone induced a greater number of large colonies than

the control vector, whereas ERK1, ERK2 and p38 alone did not

differ from the control, indicating that simple ectopic expres-

sion of these kinases is not sufficient to change the prolifer-

ation rate of NIH 3T3 cells. When co-transfected with RasQ61L,

however, ERK1 induced a significant reduction in the number

of large colonies compared with RasQ61L, whereas wild-type

ERK2 and p38 co-transfected with RasQ61L had little effect.

Representative plates are shown in Figure 6c.
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Figure 5
Overexpression of ERK1 attenuates Ras-dependent cell growth in NIH 3T3 cells. (a) NIH 3T3 cells were stably transfected with different plasmids
bearing hemagglutinin (HA) epitope-tagged ERK1, ERK1K72R, ERK2 or p38 or Myc epitope-tagged RasQ61L, all in the vector pMEX. Stable
transfectants were generated and expression of the transgene monitored by western blotting. Clones were also serum starved and stimulated with
20% serum for 10 min and extracts were probed with either anti-ERK or anti-phospho-ERK antibodies. (b) Three independent NIH 3T3 clones per
plasmid from (a) were plated in 10% serum and their growth was monitored for 5 days, as in Figure 1d. The data are the mean ± SEM of three
independent experiments. (c) Expression of double transfectants was determined as in (a). (d) Clones from (c) were monitored for cell growth as
in (b). Data are expressed as mean ± SEM of three independent experiments.
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As observed in Figure 5, expression of a kinase-defective

mutant of ERK1 was found to be very effective in inhibiting

cell proliferation in NIH 3T3. This observation is consistent

with the MEK-ERK competition model, as one of the predic-

tions of this model is that a kinase-defective form of ERK1

should efficiently displace the endogenous ERK2 protein

from MEK and therefore significantly reduce the overall sig-

naling output. We also speculated, however, that a kinase-

defective mutant of ERK2 should act as inhibitor of

endogenous ERK2 and that its effect could possibly be even

more pronounced than that caused by ERK1. To test this

hypothesis we generated a kinase-dead ERK2 mutant,

ERK2K52R, and compared its effect in the colony formation

assay with that of the ERK1K72R mutant [45]. As shown in

Figure 6b, both ERK kinase-defective mutants were very

effective in reducing oncogenic Ras-mediated colony form-

ation, but ERK2K52R caused an almost complete inhibition

whereas ERK1K72R reduced growth to only 40% of the total.
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Figure 6
Ectopic expression of ERK1 in NIH 3T3 cells inhibits Ras-mediated colony formation. (a,b) NIH 3T3 cells were transfected as indicated and colony
formation was scored after 10 days. Graphs represent quantitations of six independent experiments, expressed as mean ± SEM. Double asterisk
indicates a genotype effect that is statistically significant (p < 0.0001) , calculated from a post-hoc comparison in one-way ANOVA (Scheffe’s test:
RasQ61L-ERK1 versus RasQ61L-pMex; RasQ61L-ERK1K72R versus RasQ61L-pMex; RasQ61L-ERK2K52R versus RasQ61L-pMex). (c) A representative plate for
each clone from (a,b) is shown. 
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These data further support the idea that ERK1 and ERK2

compete for binding to MEK and therefore that their level

of expression is crucial to the fine tuning of output signal-

ing. Importantly, similar results were obtained with a dif-

ferent in vitro proliferation test, the soft agar assay (data

not shown).

ERK1 attenuates Ras-dependent tumor formation in
nude mice
NIH 3T3 cells normally show low tumorigenicity, but when

transfected with an oncogene such as RasQ61L, they acquire

the ability to induce tumor formation in immunodeficient,

athymic mice (nude mice) [46]. We therefore decided to

perform a tumorigenicity assay to test the ability of ERK1 to

reduce cellular transformation and tumor formation in vivo.

NIH 3T3 clones stably transfected with RasQ61L or ERK1,

ERK1K72R, ERK2 or p38 were tested for transgenic expression

and subsequently used in the assay (Figure 7a).

To study tumor growth we used male, 4- to 6-week-old

athymic nude mice. Cells of each clone were injected sub-

cutaneously into each flank of the nude mice, using five

animals for each clone. Nude mice were examined daily and

tumor size was recorded from day 4 to 9, as indicated in

Figure 7b. Although both RasQ61L-transformed cells and

cells double-transfected with ERK2 or p38 produced large

14.10 Journal of Biology 2006, Volume 5, Article 14 Vantaggiato and Formentini et al.                                               http://jbiol.com/content/5/5/14

Journal of Biology 2006, 5:14

Figure 7
ERK1 expression inhibits Ras-dependent tumor formation in nude mice. (a) NIH 3T3 clones were transfected as indicated and expression of the
relevant transgenes assessed by western blotting. (b) Growth of tumors in injected nude mice was monitored over 6 days starting from day 4 after
injection, by determining the skin area covered by the tumor mass (mm2). The data are expressed as mean ± SEM of two independent experiments
(ten animals per clone). (c) Representative tumors after sacrifice at day 10 are shown. (d) Mean weight (± SEM) of the different tumor samples is
indicated. Asterisk indicates a genotype effect significant at p < 0.001, calculated using a post-hoc comparison in one-way ANOVA (Scheffe’s test:
RasQ61L-ERK1 versus RasQ61L-pMex; RasQ61L-ERK1K72R versus RasQ61L-pMex).
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tumors, cells double-transfected with either ERK1 or

ERK1K72R produced significantly smaller ones.

The experiment was terminated 10 days after injection and

tumors were removed and weighed. Representative explant

sizes are shown in Figure 7c and the mean weight data of

two experiments are shown in the Figure 7d. Although mice

injected with control vector cells did not develop tumors, all

the other animals did. Tumors from mice injected with NIH

3T3 cells cotransfected with RasQ61L and ERK1 or ERK1K72R

were, however, significantly smaller (means of 0.32 g and

0.29 g, respectively) than those obtained from mice injected

with RasQ61L (1.2 g, p < 0.001 for both comparisons). No

significant differences were seen when instead comparing

tumors from mice injected with RasQ61L alone and double

transfectants with ERK2 or p38 (1.04 g and 0.98 g on

average, respectively).

These data on tumorigenicity in vivo fully confirm the

results of the in vitro functional assay, indicating a potential

anti-oncogenic role of ERK1 in its ability to reduce Ras-

mediated cell transformation and tumor formation, at least

in this experimental system.

As a final test, we analyzed biopsies from the nude mice by

western blot to confirm that a clear correlation could be

demonstrated between abnormal growth and ERK2 activ-

ation in those tumors (Figure 8a,b). As expected, endogenous

ERK2 phosphorylation was greatly upregulated in RasQ61L

samples and double transfectants with ERK2 and p38.

Double transfectants with either ERK1 or ERK1K72R showed

significantly less pronounced ERK2 activation, however, sug-

gesting a direct link to their carcinogenic potential. 

Conclusion 
The recent generation of mice with targeted mutations of

the ERK1 and ERK2 genes has provided an excellent oppor-

tunity to determine the level of redundancy and overlap in

function between these two major MAP kinase isoforms.

ERK1 mutant mice have a strikingly milder phenotype than

ERK2 mutants, which die early in development [28,30-32].

At the molecular level, one of the most intriguing features of

ERK1-deficient cells is the enhanced stimulus-dependent

activation of ERK2 in the absence of any compensatory

increase in ERK2 protein levels. We believe that this effect is

largely due to a competition between ERK1 and ERK2 in

binding to the upstream kinase MEK. In a previous report

[33] we supported this claim by showing that the kinase-

defective ERK1K72R mutant is just as effective as wild-type

ERK1 in rescuing the phenotype in ERK1-deficient MEFs

[33]. The aim of the present work was to extend those pre-

liminary findings and explore the possibility that ERK1 acts,

at least in certain cellular settings, as a negative modulator

of cell proliferation, by interfering with Ras-ERK2-

dependent signaling. First we examined growth rates of

MEFs obtained from ERK1-deficient animals. In the absence

of ERK1, MEFs proliferate faster than control cells. Accord-

ingly, whereas ERK1 knockdown by RNAi in both MEFs and

NIH 3T3 cells facilitates cell growth, ERK2 silencing causes

severe cell-proliferation deficits. By contrast, a mild over-

expression of ERK1 is sufficient to slow down cell growth

mediated by oncogenic Ras, and this concomitantly impairs

ERK2 activation. This inhibitory effect of ERK1, which

cannot be achieved by ectopically expressing ERK2, also

affects the ability of oncogenic Ras to transform NIH 3T3

cells in functional assays such as colony formation and to

cause tumors in nude mice. ERK1 seems to act by displacing
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Figure 8
ERK2 activation is significantly reduced in tumors overexpressing ERK1.
(a) Two individual tumors for each clone were explanted from treated
mice and subjected to western blot analysis to determine ERK2
activation and transgene expression. (b) Mean ± SEM of the data in (a)
are plotted as indicated.

pERK

ERK

HA

Myc

E
R

K
2 

ac
tiv

at
io

n

HA-ERK2
HA-ERK1

HA-p38

Myc-Ras

ERK1 
ERK2 

ERK1 
ERK2 

Con
tro

l

Con
tro

l

Ras Ras

Ras
 +

 E
RK1

Ras
 +

 E
RK1

Ras
 +

 E
RK1

K72
R

Ras
 +

 E
RK2

Ras
 +

 E
RK2

Ras
 +

 p
38

Con
tro

l

Ras
Ras

 +
 E

RK1
Ras

 +
 E

RK1
K72

R
Ras

 +
 E

RK2
Ras

 +
 p

38

Ras
 +

 E
RK1

K72
R

0

2

4

6

8

10

12

14

16

(a)

(b)

Ras
 +

 p
38



ERK2 from the upstream kinase MEK rather than by regulat-

ing downstream effectors, as a kinase-inactive form of ERK1

is equally effective in causing the observed phenotypes. This

hypothesis is also directly supported by the observation that

in ERK1-deficient fibroblasts, the amount of MEK-ERK2

complexes is significantly increased.

The hypothesis that signaling molecules can act as titrating

agents, sequestering central components of the signaling

machinery, has already gained some experimental support.

For instance, Rap1, a Ras-related small GTPase, was origi-

nally identified as a suppressor of K-Ras-mediated transfor-

mation because when overexpressed in NIH 3T3 cells it

binds with high affinity to Raf-1 and therefore traps this

downstream Ras effector in an inactive complex ([47] and

reviewed in [48,49]). Moreover, a provocative paper sug-

gested in 2001 [46] that wild-type K-ras protein could itself

act as a tumor suppressor of oncogenic K-Ras. In addition,

certain B-Raf kinase-defective mutants can be highly onco-

genic because they interact with wild-type c-Raf-1 and thus

activate MEKs with greater activity [25]. 

Our observation that ERK1 can interfere with ERK2-

dependent signaling follows on from these pieces of evi-

dence, but a few specific features of our results should be

highlighted. First, no mutation in the ERK1 protein seems

to be required to exert the effect on ERK2 phosphorylation,

as can be seen by simply overexpressing wild-type ERK1.

Second, no enzymatic activity is strictly necessary, as indi-

cated by the effect of ERK1K72R. Importantly, the homolo-

gous kinase-dead mutant of ERK2, ERK2K52R, is even more

effective in interfering with endogenous ERK signaling,

further supporting the competition model. Third, complete

ablation of ERK1 from cells is sufficient to provide a signifi-

cant growth advantage, in both primary fibroblasts and cul-

tured NIH 3T3 cells, although this manipulation is

ineffective in promoting oncogenic Ras-mediated transfor-

mation. Fourth, overexpression of ERK1 does not affect

normal growth but only that dependent on oncogenic Ras.

All these observations need to be explained by a detailed

cellular and biochemical model of ERK regulation, which

goes beyond the present work. 

Certainly, other regulatory mechanisms are likely to be in

place and to contribute significantly to the functional differ-

ences between ERK1 and ERK2. For instance, the rate of

translocation, dephosphorylation and sequestration in the

nucleus of the two ERK proteins could be different.

Although our experiments with the two kinase-defective

mutants suggest that protein-protein interactions in the

absence of kinase activity are dominant in the process, it is

formally possible that smaller differences in substrate speci-

ficity could also partially contribute to specific aspects of

cell physiology controlled by the two isoforms. Another

important aspect that should be taken into consideration in

the future is the potential role of scaffolding complexes in

the differential regulation of ERK1, ERK2 and MEK interac-

tions (reviewed in [50,51]). This possibility was suggested

previously by computational studies revealing that an

optimal concentration of scaffold proteins relative to their

kinase partners is always required to maximize signaling

output. Alterations of the ratio of ERK1/ERK2 to MEK and

to any scaffold protein within the cell could therefore affect

the threshold properties of the system and contribute to

some of the non-linear cellular responses [52,53]. 

Despite these open questions and the limitations of our

experimental approach, we believe we have at least identi-

fied a new, possibly important aspect of ERK regulation. We

are just starting to uncover a system of previously unappre-

ciated complexity, involving dynamic interactions of

MEK1/2, ERK1 and ERK2. Future work at the biophysical

and computational level will certainly be required to clarify

these important mechanisms. 

Materials and methods 
Plasmid construction
To generate plasmids for stable RNAi, oligonucleotides

encoding shRNAs against ERK1, ERK2 and related scram-

bled control sequences were purchased from VBC

Genomics (Vienna, Austria), annealed and cloned into BglII

and XhoI sites under the control of a constitutive human H1

promoter (pSUPER_Puro) [37]. A set of six 19-mer shRNAs

for each MAP kinase gene was designed as described [54]

and tested, and the most efficient ones were chosen. The

following oligonucleotides were used (bold text indicates

the targeted sequence in the coding region that creates the

stem of each shRNA; underlined text indicates the point

mutations): for mouse ERK1, 5’-GATCCCCGACCG-

GATGTTAACCTTCATTCAAGAGATGAAGGTTAACACCGG-

TCTTTTTGGAAA-3’ and 5’-AGCTTTTCCAAAAAGACCGG-

ATGTTAACCTTCATCTCTTGAATGAAGGTTAACATCCGGT-

CGGG-3’, targeting exon 7; for mouse ERK2,

5’-GATCCCCGTACAGAGCTCCAGAAATTTTCAAGAGAAA

TTTCTGGAGCTCTGTACTTTTTGGAAA-3’ and 5’-AGCTT-

TTCCAAAAAGTACAGAGCTCCAGAAATTTCTCTTGAAAAT-

TTCTGGAGCTCTGTACGGG-3’, targeting exon 4; for the

ERK1 control, 5’-GATCCCCGACCGGATAGTAACCTTCA-

TTCAAGAGATGAAGGTTACTATCCGGTCTTTTTGGAAC-3’

and 5’- TCGAGTTCCAAAAAGACCGGATAGTAACCTTCA-

TCTCTTGAATGAAGGTTACTATCCGGTCGGG-3’; for the

ERK2 control, 5’-GATCCCCGTACAGAGCGTCAGAAATT-

TTCAAGAGAAATTTCTGACGCTCTGTACTTTTTGGAAC-3’

and 5’-TCGAGTTCCAAAAAGTACAGAGCGTCAGAAATTTC-

TCTTGAAAATTTCTGACGCTCTGTACGGG -3’.
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All lentiviral constructs were built from plasmid

pCCLsin.cPPT.PGK.eGFP.WPRE, as described elsewhere

[55]. For cloning into LVs, each shRNA-H1/mPGK-Puro cas-

sette was cut out from pSUPER_Puro vectors and cloned

into the BamHI/ClaI site of the vector. Enhanced green

fluorescent protein (eGFP) was removed by BamHI/SalI

digestion, then the vector was blunted and self-ligated. 

For ectopic expression in the colony formation assay,

mouse ERK1, ERK1K72R, ERK2 and ERK2K52R were epitope-

tagged at the amino terminus with hemagglutinin and

cloned into the pMex-NeoR expression vector. An oncogenic

form of H-Ras (H-RasQ61L) was instead Myc-tagged and also

cloned into the pMex-NeoR expression vector.

Viral vector production and titration
VSV-pseudotyped third-generation LVs were produced by

transient four-plasmid cotransfection into 293T cells using

the calcium phosphate method and purified by ultra-

centrifugation, with the modification that 1 mM sodium

butyrate was added to the cultures for vector collection.

Supernatants were collected 48 h after transfection, filtered

through a 0.22 mm membrane and concentrated by ultra-

centrifugation as described [56].

The average number of viral vector particles were measured

by the HIV-1 gag p24 antigen immunocapture assay (NEN

Life Science Products, Boston, USA) and viral titer was

determined by real-time PCR [57].

Cell culture and biochemistry
MEF cultures were prepared from wild-type and knockout

embryos at embryonic day 13.5. Cells at early passages were

serum starved for 24 h and then stimulated with 20% serum

for various times; protein was then extracted and analyzed

by SDS-PAGE and western blotting [33]. For the RNase pro-

tection assay, RNA extraction and analysis from stimulated

cell monolayer was performed as previously described [58].

For cell-proliferation studies in MEFs or NIH 3T3 cells,

1.25 x 105 cells were seeded in each six-well plate on day 1

and maintained in Dulbecco’s Modified Eagle Medium

(DMEM) at different serum concentrations, with 2 �g/ml

puromycin if required. Medium was changed every day.

Duplicate samples for each serum concentration and for

each genotype were counted every day for 5 days using a

Burker counting chamber. For biochemistry, NIH 3T3 cells

were transfected with pSUPER_Puro-shRNAs or with

hemagglutinin epitope-tagged ERK1, ERK1K72R, ERK2, p38

and Myc epitope-tagged H-RasQ61L cloned into the pMex-

NeoR vector by calcium phosphate precipitation [59]. Stable

transfectants were obtained after selection in G418

(Geneticin, Gibco-Invitrogen, Carlsbad, USA) or puromycin

(Clontech, Mountain View, USA). 

Immunoprecipitation assay
NIH 3T3 cells were stably transfected with ERK1 and ERK2

knockdown or control plasmids. Cells were washed with

ice-cold phosphate-buffered saline before extraction in 1 ml

of lysis buffer (20 mM Tris pH 7.5, 150 mM NaCl, 10%

glycerol, 5 mM EGTA, 1 mM EDTA, 1% Triton X-100, 2 mM

MgCl2, 50 mM NaF, 10 �M Na3VO4) containing 0.2 mM

phenyl methyl sulfonyl fluoride (PMSF) and 1x COMPLETE

cocktail of protein inhibitors (Roche, Basel, Switzerland).

Extracts were clarified at 14,000 g for 5 min at 4°C. Equal

amounts of each protein lysate (5 mg) were pre-cleared with

ExtraCruz-F immunoprecipitation (IP) matrix (Santa Cruz

Biotechnology, Santa Cruz, USA) for 30 min at 4°C and

incubated for an additional 1 h with polyclonal anti-

MEK-1/2 antibodies (sc-436, Santa Cruz) complexed with

the IP matrix. Immune complexes were collected and

washed three times with lysis buffer, and western blotting

was performed with polyclonal anti-ERK1 (sc-94) and anti-

ERK2 (sc-153) antibodies (Santa Cruz), which preferentially

recognize ERK1 and ERK2, respectively.

Colony formation assay in NIH 3T3 cells 
Colony formation assays were performed as previously

described [44]. On day 0, NIH 3T3 cells were seeded in

100-mm plates, 1.5 x 105 cells per plate, and were trans-

fected the following day. Two days after transfection, cells

were trypsinized and plated on 100-mm plates, 103 cells per

plate in DMEM containing 10% bovine calf serum and

500 mg/ml G418 for the selection of neomycin-resistant

cells. Each transfection sample was plated into four plates.

Medium was changed every 3 days and after 10 days clones

were washed with water and fixed in 10% formaldehyde

(Sigma-Aldrich, St. Louis, USA) for 10 min. Plates were then

washed once with water and stained for 5 min in 0.5%

crystal violet (Fluka, Sigma-Aldrich, St. Louis, USA) in 20%

methanol and finally washed with water to remove back-

ground staining. Images were acquired with a scanner and

all colonies larger then 1.5 mm in diameter were counted. 

Tumorigenicity assay in nude mice
G418-positive clones selected as described above were used

for the tumorigenicity assay [46]. 1 x 106 cells of each clone

in log-phase growth were injected subcutaneously into each

of two flanks of male 4- to 6-week-old athymic nude mice.

For each clone five animals were used. The nude mice were

examined daily and tumor sizes were recorded. The experi-

ment was terminated 10 days after injection, animals were

sacrificed and tumors were removed and weighed.
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