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Abstract

X-chromosome inactivation occurs randomly for one of the two X chromosomes in female
cells during development. Inactivation occurs when RNA transcribed from the Xist gene on
the X chromosome from which it is expressed spreads to coat the whole X chromosome. In
the first issue of Epigenetics and Chromatin, Nesterova and colleagues investigate the role of
the RNA interference pathway enzyme Dicer in DNA methylation of the Xist promoter.

X-chromosome inactivation is the transcriptional silencing
of one X chromosome in female mammalian cells that
equalizes dosage of gene products from the X chromosome
between XX females and XY males [1-3]. X-chromosome
inactivation in the embryo proper occurs early in develop-
ment. The two X chromosomes have an equal probability of
being silenced [4]. Silencing, once established, is stable: the
same X chromosome remains inactivated in all subsequent
cell generations. As a result, each female is a mosaic of cells
in which either the maternally inherited or the paternally
inherited X is silenced. Nesterova and colleagues in the first
issue of Epigenetics and Chromatin shed new light on how
this process is regulated [5].

An antisense pair of non-coding RNAs, encoded by Xist and
Tsix (Figure 1), is important in the regulation of the random
inactivation of mouse X chromosomes. Before the signal
that initiates random X-chromosome inactivation is received,
Xist and Tsix are transcribed from all active X chromosomes
in each male and female cell [6]. Once inactivation is
initiated, Xist and Tsix are differentially regulated on the X
that will become the active X chromosome (X,) and the one
that will become the inactive X chromosome (X;). On the X
chromosome that will become the X, Xist transcripts spread
in cis from their site of synthesis to coat the entire X

chromosome and establish transcriptional silencing.
Concomitant with Xist RNA coating, Tsix is silenced on the
X,. The expression of Xist and Tsix persists on the X, for a
brief period after silencing of the X, is complete, and is
eventually extinguished. Xist RNA continues to coat the X
throughout all subsequent cell divisions, where it contri-
butes to the maintenance of silencing. These patterns of Xist
and Tsix expression are also seen in mouse female embry-
onic stem (ES) cells, which have two X,s and which
undergo X-chromosome inactivation when they are induced
to differentiate in vitro. Thus, ES cells provide a useful model
system to study X-chromosome inactivation.

Mutations in Xist or Tsix can cause non-random X
inactivation

Heterozygous mutation of Xist or Tsix causes non-random
X-chromosome inactivation in female cells. When Xist
expression is increased from one X chromosome in pre-X-
chromosome-inactivation cells, that X chromosome always
becomes the X, and the wild-type X always becomes the X,
[7]. In female ES cells or embryos in which Xist is disrupted
on one X chromosome, the mutant X chromosome always
becomes the X, and the wild-type X chromosome always
becomes the X; [8-10]. Disruption of Tsix has the opposite
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Transcription of Xist and Tsix on the X chromosome. The coding
sequences of Xist and Tsix overlap on opposite strands of the
X-chromosome DNA.

effect: the mutant X chromosome becomes the X, and the
wild-type X chromosome is always the X, [11-13]. This is
known as primary non-random X-chromosome inactivation
because the X chromosomes are chosen as the X, and X;
before silencing is initiated. A second cause of non-random
X-chromosome inactivation is the selective death of cells
that inactivate the incorrect number of X chromosomes:
because the fates of the X chromosomes are not determined
before silencing, this is known as secondary non-random X-
chromosome inactivation [14]. Because Xist and Tsix muta-
tions cause primary non-random X-chromosome inactiva-
tion, it is likely that these non-coding RNAs function in the
choice of the X, and X; before silencing is initiated.
Understanding how Xist and Tsix are regulated in pre-X-
chromosome-inactivation cells is central to understanding
how one X chromosome is randomly selected as the X, and
the other as the X in each cell.

In addition to having opposing roles in random choice, Xist
and Tsix also negatively regulate each other in ES cells. Xist
and Tsix are transcribed from overlapping regions on
opposite strands of the X-chromosome DNA (Figure 1).
Deletion of Tsix promoter sequences or a mutation that
blocks Tsix transcription before it reaches Xist RNA coding
sequences abolishes Tsix transcription and causes a roughly
ten-fold increase in Xist RNA levels from the mutant X
chromosome [11-13]. Thus, transcription of Tsix across Xist
is necessary for Tsix to negatively regulate Xist. In the Tsix
truncation mutant the Tsix promoter has histone modifica-
tion patterns that are generally associated with transcriptional
silencing [15]. These epigenetic marks also characterize the X,
and their recruitment to the X, requires transcription of Xist
[16-18]. Together, these results suggest that the increase in
Xist RNA that occurs on Tsix mutant chromosomes represses
Tsix. Consistent with the possibility that Xist negatively
regulates Tsix, Tsix RNA levels are increased from Xist
mutant X chromosomes [10,19]. Insights into the nature of
factors that are involved in the mutual regulation of Xist and
Tsix in pre-X-chromosome-inactivation cells are likely to be
important in developing an understanding of how these
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non-coding RNAs ensure that the two X chromosomes have
an equal probability of being silenced in each cell.

The role of DNA methylation

The mechanisms underlying the mutual regulation of Xist
and Tsix in pre-X-chromosome-inactivation cells are not
well characterized. An interesting new study by Nesterova
and colleagues suggests that DNA methylation may be
involved in this mutual negative regulation [5]. Nesterova et
al. demonstrate a correlation between Xist promoter DNA
methylation and Xist expression in ES cells. In XY ES cells
(in which the single X chromosome remains active), two
regions flanking the Xist transcription start site show high
levels of DNA methylation. Two XY ES cell lines bearing Xist
promoter mutations that result in increased Xist expression
showed DNA hypomethylation at these sites. In addition, a
mutation that truncates Tsix transcription before it traverses
Xist also resulted in increased Xist expression and DNA
hypomethylation at these sites. These results establish a
clear correlation between the levels of DNA methylation at
Xist and expression of Xist in ES cells. It remains to be
established whether the increase in Xist expression triggers
demethylation or vice versa. In addition, Xist and Tsix
negatively regulate each other, raising the possibility that
Tsix also has a role in regulation of Xist DNA methylation.

Tsix has also been implicated in the direct regulation of
DNA methylation. The de novo DNA methyltransferase
Dnmt3a can be immunoprecipitated with Tsix RNA using
an RNA-chromatin immunoprecipitation procedure [20].
Furthermore, Dnmt3a can de novo methylate Xist [21,22].
Together, these data suggest a model in which Tsix RNA
directs Dnmt3a to Xist in ES cells (Figure 2a). Thus, the
hypomethylation of Xist DNA in the Tsix truncation line
may occur because Dnmt3a cannot act on Xist when Tsix
RNA is not present to recruit it there.

This model explains the hypomethylation of Xist DNA in
the Tsix truncation line, but how does it account for the
hypomethylation in the Xist promoter mutation lines? As in
the Tsix truncation line, the Xist promoter mutation lines
show increased Xist expression. In contrast to the truncation
line, which does not produce Tsix RNA, the Xist promoter
mutation lines continue to express Tsix RNA. However, Tsix
RNA levels have not been quantitated in these cell lines, so
it is not possible to establish a correlation between Tsix
expression levels and Xist DNA methylation. One possibility
is that the increase in Xist expression causes a decrease in
Tsix RNA levels and a corresponding decrease in Dnmt3a
activity at Xist DNA. There is also an alternative possibility:
it may be that Xist RNA (or an epigenetic modification
induced by Xist RNA) interferes with the activity of Dnmt3a
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Models for the coordinate regulation of Xist DNA methylation and
expression by Tsix, de novo DNA methyltransferases and Dicer. De novo
DNA methyltransferases (Dnmt) promote methylation of Xist DNA.
Increased Xist expression, as is seen in the Xist promoter mutants, could
trigger Xist DNA hypomethylation (a) indirectly by affecting Tsix RNA
levels, if Tsix is necessary to direct de novo DNA methyltransferases to
the Xist gene, or (b) directly, if Xist RNA can interfere with de novo
DNA methyltransferase activity locally. (c) Because Dicer deficiency
causes a global decrease in levels of de novo DNA methyltransferases,
Dicer must lie directly upstream of the de novo DNA methyltransferases
and need not function through either Xist or Tsix to regulate Xist DNA
methylation. (The DNA is shown as methylated in a, b and ¢ (bottom),
although in a and b if the inhibitory interactions between Xist and Tsix
RNA (a) or Dmt (b) prevail, the DNA will be hypomethylated.)

or other de novo methyltransferases (Figure 2b). Indeed, the
Xist RNA-coated X; shows overall lower levels of DNA
methylation than the X,, consistent with Xist RNA inter-
fering with DNA methylation [23]. Because Xist RNA
accumulates only locally in ES cells, this activity would be
restricted to the Xist locus and perhaps nearby genes.
Analysis of Xist DNA methylation in Xist and combined Xist +
Tsix mutant ES cells will be required to distinguish between
these possibilities.

X inactivation and Dicer deficiency

Nesterova and colleagues have further investigated the role
of de novo methyltransferases in regulation of Xist expression
in an analysis of Dicer mutant male ES cells. Dicer is an

Journal of Biology 2008, Volume 7, Article 30

RNAse III enzyme that is central to the RNA interference
(RNAi) pathway. RNAi regulates many aspects of gene
expression and involves the production of antisense RNA
complementary to sequences in the mRNA of the gene that
is being regulated [24]. The formation of sense-antisense
double-stranded RNA can trigger transcriptional or post-
transcriptional gene silencing. Given that Tsix RNA contains
sequences complementary to Xist RNA, an obvious question
is whether the RNAi pathway has a role in X-chromosome
inactivation. Nesterova et al. show that several indepen-
dently derived Dicer-deficient male ES cell lines show Xist
DNA hypomethylation and upregulation of Xist expression.
They also find that the two imprinted loci H19 and Igf2rAir
show hypomethylation in Dicer-deficient cells. Hypomethy-
lation of Xist, H19 and Igf2rAir seems to be the consequence
of changes in the levels of the de novo methyltransferases
Dnmt3a, Dnmt3b and DnmtL, all of which were down-
regulated upon deletion of Dicer. This decrease in de novo
methyltransferase activity in Dicer-deficient cells was also
seen in two other studies of independently derived Dicer
mutant ES cell lines [25,26]. In these studies Dicer mutant
ES cells show hypomethylation of subtelomeric repeats or
of Oct4, Tsp50 and Sox30 promoters, which are normally
methylated. The downregulation of the de novo methyl-
transferases could be attributed to an increase in levels of
the repressor Rbl2, which is negatively regulated by the
miR-290 microRNA cluster [25,26]. Together, these results
provide a compelling argument that the change in Xist DNA
methylation seen in Dicer mutant ES cells is an indirect
consequence of the loss of de novo methyltransferase activity
(Figure 2c¢).

Does the change in Xist DNA methylation in pre-X-
chromosome-inactivation cells affect the fate of the X
chromosomes after inactivation is initiated? To answer this
question Nesterova et al. analyzed Dicer mutant embryos.
Dicer mutants die shortly after implantation, between
embryonic day (E)7.5 and E8.5. X-chromosome inactivation
is initiated at approximately E5.5, providing a brief window
in which X-chromosome inactivation can be assayed in Dicer
mutants. The cells of male and female Dicer-deficient E6.5
embryos and their wild-type littermates did not show any
appreciable difference in either Xist or Tsix expression. These
results indicate that one X chromosome can be selected as
the inactive X and Xist RNA can coat that X chromosome in
Dicer mutant embryos. Thus, X-chromosome inactivation
seems unaffected by Dicer deficiency in vivo.

The results of Nesterova et al. contrast with those from
another study of the role of Dicer in X-chromosome
inactivation. Ogawa et al. [27] examined X-chromosome
inactivation in Dicer mutant female ES cells and found that
Xist RNA could not coat and silence an X chromosome on
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differentiation. These results indicate that Dicer is necessary
for X-chromosome inactivation in vitro. Why do female ES
cells and embryos differ in their requirements for Dicer
during X-chromosome inactivation? One possibility is that
maternal stores of Dicer persist long enough to promote
X-chromosome inactivation in female Dicer mutant embryos.
However, the homozygous Dicer mutant female ES cells
used by Ogawa et al. contained a Dicer transgene that was
expressed at less than 5% of wild-type levels (this was
deployed to overcome the block to differentiation in Dicer
mutants that would have otherwise interfered with analysis
of X-chromosome inactivation), suggesting that small
amounts of Dicer are not sufficient to promote random
inactivation. A second possibility is that Dicer mutant female
embryos fail to reverse imprinted X-chromosome inactiva-
tion in their embryonic compartment. In mice, the extra-
embryonic tissues undergo imprinted X-chromosome
inactivation, in which there is exclusive silencing of the
paternal X chromosome [28]. Imprinted X-chromosome
inactivation is initiated in pre-implantation development
and seems to occur in all cells of the early embryo.
Imprinted X-chromosome inactivation is reversed in the cells
that will go on to form the embryo proper, and these cells
subsequently undergo random X-chromosome inactivation
after implantation [29,30]. Determining whether Dicer
mutant female embryos show random or imprinted X-
chromosome inactivation will establish whether Dicer is
important to erase imprinted X-chromosome inactivation.
Clearly much work remains to be done to determine how
Dicer regulates Xist expression during development.

References

. Heard E, Chaumeil |, Masui O, Okamoto |: Mammalian X-chromo-
some inactivation: an epigenetics paradigm. Cold Spring Harb Symp
Quant Biol 2004, 69:89-102.

2. Boumil RM, Lee |T: Forty years of decoding the silence in X-chro-
mosome inactivation. Hum Mol Genet 2001, 10:2225-2232.

3. Lyon MF: Gene action in the X-chromosome of the mouse (Mus
musculus L.). Nature 1961, 190:372-373.

4. Woutz A, Gribnau J: X inactivation Xplained. Curr Opin Genet Dev
2007, 17:387-393.

5. Nesterova TB, Popova BC, Cobb BS, Norton S, Senner C, Tang YA,
Spruce T, Rodriguez TA, Sado T, Merkenschlager M, Brockdorff N:
Dicer regulates Xist promoter methylation in ES cells indirectly
through transcriptional control of Dnmt3a. Epigenetics Chromatin
2008, 1:2.

6.  Mlynarczyk SK, Panning B: X inactivation: Tsix and Xist as yin and
yang. Curr Biol 2000, 10:R899-R903.

7. Nesterova TB, Johnston CM, Appanah R, Newall AE, Godwin |,
Alexiou M, Brockdorff N: Skewing X chromosome choice by
modulating sense transcription across the Xist locus. Genes Dev
2003, 17:2177-2190.

8. Marahrens Y, Loring J, Jaenisch R: Role of the Xist gene in X
chromosome choosing. Cell 1998, 92:657-664.

9. Gribnau , Luikenhuis S, Hochedlinger K, Monkhorst K, Jaenisch R:
X chromosome choice occurs independently of asynchronous
replication timing. / Cell Biol 2005, 168:365-373.

10. Sado T, Hoki Y, Sasaki H: Tsix defective in splicing is competent to
establish Xist silencing. Development 2006, 133:4925-4931.

21.

22.

23.
24.
25.

26.

27.
28.
29.

30.

http://jbiol.com/content/7/8/30

Lee JT, Lu N: Targeted mutagenesis of Tsix leads to nonrandom X
inactivation. Cell 1999, 99:47-57.

Luikenhuis S, Wutz A, Jaenisch R: Antisense transcription through
the Xist locus mediates Tsix function in embryonic stem cells. Mo/
Cell Biol 2001, 21:8512-8520.

Sado T, Wang Z, Sasaki H, Li E: Regulation of imprinted X-chromo-
some inactivation in mice by Tsix. Development 2001, 128:1275-1286.
McMahon A, Monk M: X-chromosome activity in female mouse
embryos heterozygous for Pgk-1 and Searle’s translocation, T(X;
16) 16H. Genet Res 1983, 41:69-83.

Navarro P, Pichard S, Ciaudo C, Avner P, Rougeulle C: Tsix transcrip-
tion across the Xist gene alters chromatin conformation without
affecting Xist transcription: implications for X-chromosome inactiva-
tion. Genes Dev 2005, 19:1474-1484.

Silva J, Mak W, Zvetkova |, Appanah R, Nesterova TB, Webster Z,
Peters AH, Jenuwein T, Otte AP, Brockdorff N: Establishment of
histone h3 methylation on the inactive X chromosome requires
transient recruitment of Eed-Enx| Polycomb group complexes.
Dev Cell 2003, 4:481-495.

Plath K, Fang ], Mlynarczyk-Evans SK, Cao R, Worringer KA,
Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y: Role of
histone H3 lysine 27 methylation in X inactivation. Science 2003,
300:131-135.

Kohlmaier A, Savarese F, Lachner M, Martens J, Jenuwein T, Wutz A:
A chromosomal memory triggered by Xist regulates histone
methylation in X inactivation. PLoS Biol 2004, 2:E171.

Sado T, Hoki Y, Sasaki H: Tsix silences Xist through modification
of chromatin structure. Dev Cell 2005, 9:159-165.

Sun BK, Deaton AM, Lee |T: A transient heterochromatic state in
Xist preempts X inactivation choice without RNA stabilization.
Mol Cell 2006, 21:617-628.

Sado T, Okano M, Li E, Sasaki H: De novo DNA methylation is
dispensable for the initiation and propagation of X chromosome
inactivation. Development 2004, 131:975-982.

Okano M, Bell DW, Haber DA, Li E: DNA methyltransferases
Dnmt3a and Dnmt3b are essential for de novo methylation and
mammalian development. Cell 1999, 99:247-257.

Hellman A, Chess A: Gene body-specific methylation on the active
X chromosome. Science 2007, 315:1141-1143.

Campbell TN, Choy FY: RNA interference: past, present and
future. Curr Issues Mol Biol 2005, 7:1-6.

Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F,
Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W: MicroRNAs
control de novo DNA methylation through regulation of transcrip-
tional repressors in mouse embryonic stem cells. Nat Struct Mol
Biol 2008, 15:259-267.

Benetti R, Gonzalo S, Jaco |, Muiioz P, Gonzalez S, Schoeftner S,
Murchison E, Andl T, Chen T, Klatt P, Li E, Serrano M, Millar S,
Hannon G, Blasco MA: A mammalian microRNA cluster controls
DNA methylation and telomere recombination via Rbl2-dependent
regulation of DNA methyltransferases. Nat Struct Mol Biol 2008,
15:268-279.

Ogawa Y, Sun BK, Lee JT: Intersection of the RNA interference
and X-inactivation pathways. Science 2008, 320:1336-1341.

Lyon MF: The X inactivation centre and X chromosome imprinting.
Eur | Hum Genet 1994, 2:255-261.

Okamoto |, Otte AP, Allis CD, Reinberg D, Heard E: Epigenetic
dynamics of imprinted X inactivation during early mouse develop-
ment. Science 2004, 303:644-649.

Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S,
Otte AP, Brockdorff N: Reactivation of the paternal X chromo-
some in early mouse embryos. Science 2004, 303:666-669.

Journal of Biology 2008, 7:30



	Abstract
	Mutations in Xist or Tsix can cause non-random X inactivation
	The role of DNA methylation
	X inactivation and Dicer deficiency
	References

